弯曲问题的几个注解
弯曲问题的几个注解
奇异函数
定义奇异函数为:
< x − a > n = { 0 , x < a ( x − a ) n , x > a \left< x-a\right>^n = \begin{cases} 0 & , x < a \\ (x-a)^n & , x > a \end{cases} ⟨x−a⟩n={0(x−a)n,x<a,x>a
< x − a > n = { 0 , x < a ( x − a ) n = 1 ( n + 1 ) ! d ( x − a ) n + 1 d x , x > a \left< x-a\right>^n = \begin{cases} 0 & , x < a \\ (x-a)^n =\frac{1}{(n+1)!}\frac{\text{d}(x-a)^{n+1}}{\text{d}x}& , x > a \end{cases} ⟨x−a⟩n={0(x−a)n=(n+1)!1dxd(x−a)n+1,x<a,x>a
微积分关系满足如下关系:
d ( x − a ) n + 1 d x = ( n + 1 ) ! < x − a > n \frac{\text{d}(x-a)^{n+1}}{\text{d}x}=(n+1)!\left< x-a \right>^n dxd(x−a)n+1=(n+1)!⟨x−a⟩n
∫ − ∞ x < x − a > n d x = 1 n + 1 < x − a > n + 1 \int_{-\infty}^{x} \left< x-a\right>^n\text{d} x=\frac{1}{n+1}\left< x-a\right>^{n+1} ∫−∞x⟨x−a⟩ndx=n+11⟨x−a⟩n+1
例
x = y = z = a x=y=z=a x=y=z=a,求解挠曲线近似微分方程。
解
弯矩方程为:
M ( x ) = 5 q a 6 x − q a 2 < x − a > 0 − q a < x − a > 1 − q 2 < x − a > 2 M(x)=\frac{5qa}{6}x-qa^2\left< x-a\right>^0-qa\left< x-a\right>^1-\frac{q}{2}\left< x-a\right>^2 M(x)=65qax−qa2⟨x−a⟩0−qa⟨x−a⟩1−2q⟨x−a⟩2
有挠曲线近似微分方程:
E I w ′ ′ = 5 q a 6 x − q a 2 < x − a > 0 − q a < x − 2 a > 1 − q 2 < x − 2 a > 2 EIw^{\prime\prime}=\frac{5qa}{6}x-qa^2\left< x-a\right>^0-qa\left< x-2a\right>^1-\frac{q}{2}\left< x-2a\right>^2 EIw′′=65qax−qa2⟨x−a⟩0−qa⟨x−2a⟩1−2q⟨x−2a⟩2
得到:
E I w = 5 q a 36 x 3 − 1 2 q a 2 < x − 2 a > 2 − 1 6 q a < x − 2 a > 3 − q 24 < x − 2 a > 4 + C x + D EIw=\frac{5qa}{36}x^3-\frac{1}{2}qa^2\left< x-2a\right>^2-\frac{1}{6}qa\left< x-2a\right>^3-\frac{q}{24}\left< x-2a\right>^4+Cx+D EIw=365qax3−21qa2⟨x−2a⟩2−61qa⟨x−2a⟩3−24q⟨x−2a⟩4+Cx+D
代入边界条件:
w ∣ x = 0 = w ∣ x = 3 a = 0 w|_{x=0}=w|_{x=3a}=0 w∣x=0=w∣x=3a=0
得到:
D = 0 , C = − 37 72 q a 3 D=0,C=-\frac{37}{72}qa^3 D=0,C=−7237qa3
理想黏结的两种材料组合梁
其中性轴公式:
h c = 1 2 ( E 1 b 1 h 1 2 − E 2 b 2 h 2 2 E 1 b 1 h 1 + E 2 b 2 h 2 ) h_c=\frac{1}{2}\left(\frac{E_1b_1h_1^2-E_2b_2h_2^2}{E_1b_1h_1+E_2b_2h_2}\right) hc=21(E1b1h1+E2b2h2E1b1h12−E2b2h22)
对于等腹宽里梁:
h c = 1 2 ( E 1 h 1 2 − E 2 h 2 2 E 1 h 1 + E 2 h 2 ) h_c=\frac{1}{2}\left(\frac{E_1h_1^2-E_2h_2^2}{E_1h_1+E_2h_2}\right) hc=21(E1h1+E2h2E1h12−E2h22)
其正应力公式:
σ 1 = M y I z σ 2 = E 2 E 1 M y I z \begin{align*} &\sigma_1=\frac{My}{I_z}\\ &\sigma_2=\frac{E_2}{E_1}\frac{My}{I_z} \end{align*} σ1=IzMyσ2=E1E2IzMy
弹性基础梁
弹性基础梁是指支撑在弹性地基上的梁结构,地基对梁的反力与梁的位移成正比。
E I d 4 w d x 4 + k ⋅ w = q ( x ) EI \frac{\text{d}^4w}{\text{d}x^4} + k \cdot w = q(x) EIdx4d4w+k⋅w=q(x)
\documentclass[tikz]{standalone}
\usetikzlibrary{calc,decorations.pathmorphing,patterns,arrows.meta}\begin{document}
\begin{tikzpicture}[scale=1.8]% 定义参数\def\beamLength{6}\def\beamHeight{0.3}\def\springLength{0.5}\def\springCount{12}\def\loadHeight{0.7} % 均布载荷高度\def\momentRadius{0.6} % 弯矩符号半径% 绘制梁\draw[thick] (0,0) -- (\beamLength,0) -- (\beamLength,\beamHeight) -- (0,\beamHeight) -- cycle;\node[left] at (0,\beamHeight/2) {$EI$};% 绘制均布载荷(向下箭头)\draw[thick] (0,\beamHeight+\loadHeight) -- (\beamLength,\beamHeight+\loadHeight);\foreach \x in {0.5,1.5,...,\beamLength-0.5}{\draw[thick,->,>=Stealth] (\x,\beamHeight+\loadHeight) -- (\x,\beamHeight);}\node[above] at (\beamLength/2,\beamHeight+\loadHeight) {$q$};% 绘制弹簧地基\foreach \x in {1,...,\springCount}{\pgfmathsetmacro{\posX}{\x*\beamLength/(\springCount+1)}\draw[decorate,decoration={aspect=0.3, segment length=2.5pt, amplitude=2.5pt,coil}] (\posX,0) -- (\posX,-\springLength);\draw (\posX,-\springLength) -- +(-0.2,0.1) -- +(0.2,0.1);}\node[left] at (0,-\springLength/2) {$k$};% 绘制地基\fill[pattern=north east lines,pattern color=gray!30] (-0.5,-\springLength-0.2) rectangle (\beamLength+0.5,-\springLength-0.4);\draw[thick] (-0.5,-\springLength-0.2) -- (\beamLength+0.5,-\springLength-0.2);\node[below] at (\beamLength/2,-\springLength-0.3) {弹性地基};% 优化挠度曲线(增加控制点)\draw[blue,thick,dashed] plot[smooth, tension=0.7] coordinates {(0,0) (\beamLength/6,-0.08) (\beamLength/3,-0.15) (\beamLength/2,-0.22) (2*\beamLength/3,-0.15) (5*\beamLength/6,-0.08) (\beamLength,0)};\draw[blue,->,>=Latex] ($(\beamLength/2,-0.22)$) -- +(0,0.18) node[midway,right,font=\small] {挠度 $w(x)$};% 标注应力方向\draw[green!60!black,thick] (0.8*\beamLength,\beamHeight) -- (0.8*\beamLength,\beamHeight+0.15) node[above,font=\small] {拉应力 $\sigma_t$};\draw[green!60!black,thick] (0.8*\beamLength,0) -- (0.8*\beamLength,-0.15) node[below,font=\small] {压应力 $\sigma_c$};
\end{tikzpicture}
\end{document}