python打卡第47天
昨天代码中注意力热图的部分顺移至今天
知识点回顾:
热力图
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__() # ---------------------- 第一个卷积块 ----------------------self.conv1 = nn.Conv2d(3, 32, 3, padding=1)self.bn1 = nn.BatchNorm2d(32)self.relu1 = nn.ReLU()# 新增:插入通道注意力模块(SE模块)self.ca1 = ChannelAttention(in_channels=32, reduction_ratio=16) self.pool1 = nn.MaxPool2d(2, 2) # ---------------------- 第二个卷积块 ----------------------self.conv2 = nn.Conv2d(32, 64, 3, padding=1)self.bn2 = nn.BatchNorm2d(64)self.relu2 = nn.ReLU()# 新增:插入通道注意力模块(SE模块)self.ca2 = ChannelAttention(in_channels=64, reduction_ratio=16) self.pool2 = nn.MaxPool2d(2) # ---------------------- 第三个卷积块 ----------------------self.conv3 = nn.Conv2d(64, 128, 3, padding=1)self.bn3 = nn.BatchNorm2d(128)self.relu3 = nn.ReLU()# 新增:插入通道注意力模块(SE模块)self.ca3 = ChannelAttention(in_channels=128, reduction_ratio=16) self.pool3 = nn.MaxPool2d(2) # ---------------------- 全连接层(分类器) ----------------------self.fc1 = nn.Linear(128 * 4 * 4, 512)self.dropout = nn.Dropout(p=0.5)self.fc2 = nn.Linear(512, 10)def forward(self, x):# ---------- 卷积块1处理 ----------x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.ca1(x) # 应用通道注意力x = self.pool1(x) # ---------- 卷积块2处理 ----------x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) x = self.ca2(x) # 应用通道注意力x = self.pool2(x) # ---------- 卷积块3处理 ----------x = self.conv3(x) x = self.bn3(x) x = self.relu3(x) x = self.ca3(x) # 应用通道注意力x = self.pool3(x) # ---------- 展平与全连接层 ----------x = x.view(-1, 128 * 4 * 4) x = self.fc1(x) x = self.relu3(x) x = self.dropout(x) x = self.fc2(x) return x # 重新初始化模型,包含通道注意力模块
model = CNN()
model = model.to(device) # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001) # Adam优化器# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, # 指定要控制的优化器(这里是Adam)mode='min', # 监测的指标是"最小化"(如损失函数)patience=3, # 如果连续3个epoch指标没有改善,才降低LRfactor=0.5 # 降低LR的比例(新LR = 旧LR × 0.5)
# 训练模型(复用原有的train函数)
print("开始训练带通道注意力的CNN模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs=50)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")
# 可视化空间注意力热力图(显示模型关注的图像区域)
def visualize_attention_map(model, test_loader, device, class_names, num_samples=3):"""可视化模型的注意力热力图,展示模型关注的图像区域"""model.eval() # 设置为评估模式with torch.no_grad():for i, (images, labels) in enumerate(test_loader):if i >= num_samples: # 只可视化前几个样本breakimages, labels = images.to(device), labels.to(device)# 创建一个钩子,捕获中间特征图activation_maps = []def hook(module, input, output):activation_maps.append(output.cpu())# 为最后一个卷积层注册钩子(获取特征图)hook_handle = model.conv3.register_forward_hook(hook)# 前向传播,触发钩子outputs = model(images)# 移除钩子hook_handle.remove()# 获取预测结果_, predicted = torch.max(outputs, 1)# 获取原始图像img = images[0].cpu().permute(1, 2, 0).numpy()# 反标准化处理img = img * np.array([0.2023, 0.1994, 0.2010]).reshape(1, 1, 3) + np.array([0.4914, 0.4822, 0.4465]).reshape(1, 1, 3)img = np.clip(img, 0, 1)# 获取激活图(最后一个卷积层的输出)feature_map = activation_maps[0][0].cpu() # 取第一个样本# 计算通道注意力权重(使用SE模块的全局平均池化)channel_weights = torch.mean(feature_map, dim=(1, 2)) # [C]# 按权重对通道排序sorted_indices = torch.argsort(channel_weights, descending=True)# 创建子图fig, axes = plt.subplots(1, 4, figsize=(16, 4))# 显示原始图像axes[0].imshow(img)axes[0].set_title(f'原始图像\n真实: {class_names[labels[0]]}\n预测: {class_names[predicted[0]]}')axes[0].axis('off')# 显示前3个最活跃通道的热力图for j in range(3):channel_idx = sorted_indices[j]# 获取对应通道的特征图channel_map = feature_map[channel_idx].numpy()# 归一化到[0,1]channel_map = (channel_map - channel_map.min()) / (channel_map.max() - channel_map.min() + 1e-8)# 调整热力图大小以匹配原始图像from scipy.ndimage import zoomheatmap = zoom(channel_map, (32/feature_map.shape[1], 32/feature_map.shape[2]))# 显示热力图axes[j+1].imshow(img)axes[j+1].imshow(heatmap, alpha=0.5, cmap='jet')axes[j+1].set_title(f'注意力热力图 - 通道 {channel_idx}')axes[j+1].axis('off')plt.tight_layout()plt.show()# 调用可视化函数
visualize_attention_map(model, test_loader, device, class_names, num_samples=3)
这个注意力热图是通过构子机制: `register_forward_hook` 捕获最后一个卷积层(`conv3`)的输出特征图。
1. **通道权重计算**:对特征图的每个通道进行全局平均池化,得到通道重要性权重。
2. **热力图生成**:将高权重通道的特征图缩放至原始图像尺寸,与原图叠加显示。
热力图(红色表示高关注,蓝色表示低关注)半透明覆盖在原图上。主要从以下方面理解:
- **高关注区域**(红色):模型认为对分类最重要的区域。
例如:
- 在识别“狗”时,热力图可能聚焦狗的面部、身体轮廓或特征性纹理。
- 若热力图错误聚焦背景(如红色区域在无关物体上),可能表示模型过拟合或训练不足。
**多通道对比**
- **不同通道关注不同特征**:
例如:
- 通道1可能关注整体轮廓,通道2关注纹理细节,通道3关注颜色分布。
- 结合多个通道的热力图,可全面理解模型的决策逻辑。
可以帮助解释
- 检查模型是否关注正确区域(如识别狗时,是否聚焦狗而非背景)。
- 发现数据标注问题(如标签错误、图像噪声)。
- 向非技术人员解释模型决策依据(如“模型认为这是狗,因为关注了眼睛和嘴巴”)。