当前位置: 首页 > news >正文

Python训练营打卡 Day46

道注意力(SE注意力)

知识点回顾:

  1. 不同CNN层的特征图:不同通道的特征图
  2. 什么是注意力:注意力家族,类似于动物园,都是不同的模块,好不好试了才知道。
  3. 通道注意力:模型的定义和插入的位置
  4. 通道注意力后的特征图和热力图

SE注意力机制(Squeeze-and-Excitation Networks)

1. 不同CNN层的特征图:不同通道的特征图
  • 特征图:就像餐厅中每种食材都含有不同的营养成分,CNN的每个通道的特征图都捕捉了图像的不同特征。

  • 通道注意力:关注哪些特征(食材)对当前任务更重要。

2. 什么是注意力:注意力家族,类似于动物园,都是不同的模块,好不好试了才知道
  • 注意力概念:如同在嘈杂的餐厅中,顾客注意力集中在某道菜上,深度学习模型的注意力机制让模型集中精力在输入数据的关键部分。

  • 注意力家族:有不同的注意力机制,如同动物园中有多种动物,各有特点,如SE注意力、空间注意力等,需通过实验确定哪种更有效。

3. 通道注意力:模型的定义和插入的位置
  • 模型的定义:类似于在餐厅中制定烹饪流程,通道注意力定义了如何动态调整不同特征通道的重要性。

  • 插入的位置:通常紧接着卷积层或池化层后,如在ResNet中,将SE模块插入每个残差块中。

4. 通道注意力后的特征图和热力图
  • 特征图:调整后的图显示各通道特征重要性,如同食材经调味后的“增强版”。

  • 热力图:可视化通道注意力后的特征图,如同在餐厅中用热成像仪显示食材热度,颜色越亮表示对应区域特征越重要。

内容参考

作业:

  1. 今日代码较多,理解逻辑即可
  2. 对比不同卷积层特征图可视化的结果(可选)

原始代码,特征图可视化

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置替代中文字体(适用于Linux)
plt.rcParams["font.family"] = ["WenQuanYi Micro Hei", "sans-serif"]
plt.rcParams['axes.unicode_minus'] = False
# # 设置中文字体支持
# plt.rcParams["font.family"] = ["SimHei"]
# plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 1. 数据预处理
# 训练集:使用多种数据增强方法提高模型泛化能力
train_transform = transforms.Compose([# 随机裁剪图像,从原图中随机截取32x32大小的区域transforms.RandomCrop(32, padding=4),# 随机水平翻转图像(概率0.5)transforms.RandomHorizontalFlip(),# 随机颜色抖动:亮度、对比度、饱和度和色调随机变化transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),# 随机旋转图像(最大角度15度)transforms.RandomRotation(15),# 将PIL图像或numpy数组转换为张量transforms.ToTensor(),# 标准化处理:每个通道的均值和标准差,使数据分布更合理transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原
test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./cifar_data/cifar_data',train=True,download=True,transform=train_transform  # 使用增强后的预处理
)test_dataset = datasets.CIFAR10(root='./cifar_data/cifar_data',train=False,transform=test_transform  # 测试集不使用增强
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 4. 定义CNN模型的定义(替代原MLP)
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()  # 继承父类初始化# ---------------------- 第一个卷积块 ----------------------# 卷积层1:输入3通道(RGB),输出32个特征图,卷积核3x3,边缘填充1像素self.conv1 = nn.Conv2d(in_channels=3,       # 输入通道数(图像的RGB通道)out_channels=32,     # 输出通道数(生成32个新特征图)kernel_size=3,       # 卷积核尺寸(3x3像素)padding=1            # 边缘填充1像素,保持输出尺寸与输入相同)# 批量归一化层:对32个输出通道进行归一化,加速训练self.bn1 = nn.BatchNorm2d(num_features=32)# ReLU激活函数:引入非线性,公式:max(0, x)self.relu1 = nn.ReLU()# 最大池化层:窗口2x2,步长2,特征图尺寸减半(32x32→16x16)self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  # stride默认等于kernel_size# ---------------------- 第二个卷积块 ----------------------# 卷积层2:输入32通道(来自conv1的输出),输出64通道self.conv2 = nn.Conv2d(in_channels=32,      # 输入通道数(前一层的输出通道数)out_channels=64,     # 输出通道数(特征图数量翻倍)kernel_size=3,       # 卷积核尺寸不变padding=1            # 保持尺寸:16x16→16x16(卷积后)→8x8(池化后))self.bn2 = nn.BatchNorm2d(num_features=64)self.relu2 = nn.ReLU()self.pool2 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:16x16→8x8# ---------------------- 第三个卷积块 ----------------------# 卷积层3:输入64通道,输出128通道self.conv3 = nn.Conv2d(in_channels=64,      # 输入通道数(前一层的输出通道数)out_channels=128,    # 输出通道数(特征图数量再次翻倍)kernel_size=3,padding=1            # 保持尺寸:8x8→8x8(卷积后)→4x4(池化后))self.bn3 = nn.BatchNorm2d(num_features=128)self.relu3 = nn.ReLU()  # 复用激活函数对象(节省内存)self.pool3 = nn.MaxPool2d(kernel_size=2)  # 尺寸减半:8x8→4x4# ---------------------- 全连接层(分类器) ----------------------# 计算展平后的特征维度:128通道 × 4x4尺寸 = 128×16=2048维self.fc1 = nn.Linear(in_features=128 * 4 * 4,  # 输入维度(卷积层输出的特征数)out_features=512          # 输出维度(隐藏层神经元数))# Dropout层:训练时随机丢弃50%神经元,防止过拟合self.dropout = nn.Dropout(p=0.5)# 输出层:将512维特征映射到10个类别(CIFAR-10的类别数)self.fc2 = nn.Linear(in_features=512, out_features=10)def forward(self, x):# 输入尺寸:[batch_size, 3, 32, 32](batch_size=批量大小,3=通道数,32x32=图像尺寸)# ---------- 卷积块1处理 ----------x = self.conv1(x)       # 卷积后尺寸:[batch_size, 32, 32, 32](padding=1保持尺寸)x = self.bn1(x)         # 批量归一化,不改变尺寸x = self.relu1(x)       # 激活函数,不改变尺寸x = self.pool1(x)       # 池化后尺寸:[batch_size, 32, 16, 16](32→16是因为池化窗口2x2)# ---------- 卷积块2处理 ----------x = self.conv2(x)       # 卷积后尺寸:[batch_size, 64, 16, 16](padding=1保持尺寸)x = self.bn2(x)x = self.relu2(x)x = self.pool2(x)       # 池化后尺寸:[batch_size, 64, 8, 8]# ---------- 卷积块3处理 ----------x = self.conv3(x)       # 卷积后尺寸:[batch_size, 128, 8, 8](padding=1保持尺寸)x = self.bn3(x)x = self.relu3(x)x = self.pool3(x)       # 池化后尺寸:[batch_size, 128, 4, 4]# ---------- 展平与全连接层 ----------# 将多维特征图展平为一维向量:[batch_size, 128*4*4] = [batch_size, 2048]x = x.view(-1, 128 * 4 * 4)  # -1自动计算批量维度,保持批量大小不变x = self.fc1(x)           # 全连接层:2048→512,尺寸变为[batch_size, 512]x = self.relu3(x)         # 激活函数(复用relu3,与卷积块3共用)x = self.dropout(x)       # Dropout随机丢弃神经元,不改变尺寸x = self.fc2(x)           # 全连接层:512→10,尺寸变为[batch_size, 10](未激活,直接输出logits)return x  # 输出未经过Softmax的logits,适用于交叉熵损失函数# 初始化模型
model = CNN()
model = model.to(device)  # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,        # 指定要控制的优化器(这里是Adam)mode='min',       # 监测的指标是"最小化"(如损失函数)patience=3,       # 如果连续3个epoch指标没有改善,才降低LRfactor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)
# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):model.train()  # 设置为训练模式# 记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号# 记录每个 epoch 的准确率和损失train_acc_history = []test_acc_history = []train_loss_history = []test_loss_history = []for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPUoptimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计准确率和损失running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 计算当前epoch的平均训练损失和准确率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totaltrain_acc_history.append(epoch_train_acc)train_loss_history.append(epoch_train_loss)# 测试阶段model.eval()  # 设置为评估模式test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testtest_acc_history.append(epoch_test_acc)test_loss_history.append(epoch_test_loss)# 更新学习率调度器scheduler.step(epoch_test_loss)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)# 绘制每个 epoch 的准确率和损失曲线plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc  # 返回最终测试准确率# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 7. 绘制每个 epoch 的准确率和损失曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 4))# 绘制准确率曲线plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('训练和测试准确率')plt.legend()plt.grid(True)# 绘制损失曲线plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('训练和测试损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 8. 执行训练和测试
epochs = 50  # 增加训练轮次为了确保收敛
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型
torch.save(model.state_dict(), 'cifar10_cnn_model.pth')
print("模型已保存为: cifar10_cnn_model.pth")
# 设置替代中文字体(适用于Linux)
plt.rcParams["font.family"] = ["WenQuanYi Micro Hei", "sans-serif"]
plt.rcParams['axes.unicode_minus'] = False
def visualize_feature_maps(model, test_loader, device, layer_names, num_images=3, num_channels=9):"""可视化指定层的特征图(修复循环冗余问题)参数:model: 模型test_loader: 测试数据加载器layer_names: 要可视化的层名称(如['conv1', 'conv2', 'conv3'])num_images: 可视化的图像总数num_channels: 每个图像显示的通道数(取前num_channels个通道)"""model.eval()  # 设置为评估模式class_names = ['飞机', '汽车', '鸟', '猫', '鹿', '狗', '青蛙', '马', '船', '卡车']# 从测试集加载器中提取指定数量的图像(避免嵌套循环)images_list, labels_list = [], []for images, labels in test_loader:images_list.append(images)labels_list.append(labels)if len(images_list) * test_loader.batch_size >= num_images:break# 拼接并截取到目标数量# torch.cat(images_list, dim=0) 将多个图像张量在批次维度(dim=0)拼接成一个大张量images = torch.cat(images_list, dim=0)[:num_images].to(device)labels = torch.cat(labels_list, dim=0)[:num_images].to(device)with torch.no_grad():# 存储各层特征图feature_maps = {}# 保存钩子句柄hooks = []# 定义钩子函数,捕获指定层的输出def hook(module, input, output, name):feature_maps[name] = output.cpu()  # 保存特征图到字典# 为每个目标层注册钩子,并保存钩子句柄for name in layer_names:# getattr(model, name):通过层名称动态获取模型中的模块(如卷积层、ReLU 层等)。module = getattr(model, name)hook_handle = module.register_forward_hook(lambda m, i, o, n=name: hook(m, i, o, n))hooks.append(hook_handle)# 前向传播触发钩子_ = model(images)# 正确移除钩子for hook_handle in hooks:hook_handle.remove()# 可视化每个图像的各层特征图(仅一层循环)for img_idx in range(num_images):img = images[img_idx].cpu().permute(1, 2, 0).numpy()# 反标准化处理(恢复原始像素值)img = img * np.array([0.2023, 0.1994, 0.2010]).reshape(1, 1, 3) + np.array([0.4914, 0.4822, 0.4465]).reshape(1, 1, 3)img = np.clip(img, 0, 1)  # 确保像素值在[0,1]范围内# 创建子图num_layers = len(layer_names)fig, axes = plt.subplots(1, num_layers + 1, figsize=(4 * (num_layers + 1), 4))# 显示原始图像axes[0].imshow(img)axes[0].set_title(f'原始图像\n类别: {class_names[labels[img_idx]]}')axes[0].axis('off')# 显示各层特征图# layer_names: 要可视化的层名称(如['conv1', 'conv2', 'conv3'])for layer_idx, layer_name in enumerate(layer_names):fm = feature_maps[layer_name][img_idx]  # 取第img_idx张图像的特征图fm = fm[:num_channels]  # 仅取前num_channels个通道num_rows = int(np.sqrt(num_channels))num_cols = num_channels // num_rows if num_rows != 0 else 1# 创建子图网格layer_ax = axes[layer_idx + 1]layer_ax.set_title(f'{layer_name}特征图 \n')# 加个换行让文字分离上去layer_ax.axis('off')  # 关闭大子图的坐标轴# 在大子图内创建小网格for ch_idx, channel in enumerate(fm):ax = layer_ax.inset_axes([ch_idx % num_cols / num_cols, (num_rows - 1 - ch_idx // num_cols) / num_rows, 1/num_cols, 1/num_rows])ax.imshow(channel.numpy(), cmap='viridis')ax.set_title(f'通道 {ch_idx + 1}')ax.axis('off')plt.tight_layout()plt.show()# 调用示例(按需修改参数)
layer_names = ['conv1', 'conv2', 'conv3']
visualize_feature_maps(model=model,test_loader=test_loader,device=device,layer_names=layer_names,num_images=5,  # 可视化5张测试图像 → 输出5张大图num_channels=9   # 每张图像显示前9个通道的特征图
)

引入通道注意力机制后,特征图可视化

# ===================== 新增:通道注意力模块(SE模块) =====================
class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_ratio=16):"""参数:in_channels: 输入特征图的通道数reduction_ratio: 降维比例,用于减少参数量"""super(ChannelAttention, self).__init__()# 全局平均池化 - 将空间维度压缩为1x1,保留通道信息self.avg_pool = nn.AdaptiveAvgPool2d(1)# 全连接层 + 激活函数,用于学习通道间的依赖关系self.fc = nn.Sequential(# 降维:压缩通道数,减少计算量nn.Linear(in_channels, in_channels // reduction_ratio, bias=False),nn.ReLU(inplace=True),# 升维:恢复原始通道数nn.Linear(in_channels // reduction_ratio, in_channels, bias=False),# Sigmoid将输出值归一化到[0,1],表示通道重要性权重nn.Sigmoid())def forward(self, x):"""参数:x: 输入特征图,形状为 [batch_size, channels, height, width]返回:加权后的特征图,形状不变"""batch_size, channels, height, width = x.size()# 1. 全局平均池化:[batch_size, channels, height, width] → [batch_size, channels, 1, 1]avg_pool_output = self.avg_pool(x)# 2. 展平为一维向量:[batch_size, channels, 1, 1] → [batch_size, channels]avg_pool_output = avg_pool_output.view(batch_size, channels)# 3. 通过全连接层学习通道权重:[batch_size, channels] → [batch_size, channels]channel_weights = self.fc(avg_pool_output)# 4. 重塑为二维张量:[batch_size, channels] → [batch_size, channels, 1, 1]channel_weights = channel_weights.view(batch_size, channels, 1, 1)# 5. 将权重应用到原始特征图上(逐通道相乘)return x * channel_weights  # 输出形状:[batch_size, channels, height, width]class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()  # ---------------------- 第一个卷积块 ----------------------self.conv1 = nn.Conv2d(3, 32, 3, padding=1)self.bn1 = nn.BatchNorm2d(32)self.relu1 = nn.ReLU()# 新增:插入通道注意力模块(SE模块)self.ca1 = ChannelAttention(in_channels=32, reduction_ratio=16)  self.pool1 = nn.MaxPool2d(2, 2)  # ---------------------- 第二个卷积块 ----------------------self.conv2 = nn.Conv2d(32, 64, 3, padding=1)self.bn2 = nn.BatchNorm2d(64)self.relu2 = nn.ReLU()# 新增:插入通道注意力模块(SE模块)self.ca2 = ChannelAttention(in_channels=64, reduction_ratio=16)  self.pool2 = nn.MaxPool2d(2)  # ---------------------- 第三个卷积块 ----------------------self.conv3 = nn.Conv2d(64, 128, 3, padding=1)self.bn3 = nn.BatchNorm2d(128)self.relu3 = nn.ReLU()# 新增:插入通道注意力模块(SE模块)self.ca3 = ChannelAttention(in_channels=128, reduction_ratio=16)  self.pool3 = nn.MaxPool2d(2)  # ---------------------- 全连接层(分类器) ----------------------self.fc1 = nn.Linear(128 * 4 * 4, 512)self.dropout = nn.Dropout(p=0.5)self.fc2 = nn.Linear(512, 10)def forward(self, x):# ---------- 卷积块1处理 ----------x = self.conv1(x)       x = self.bn1(x)         x = self.relu1(x)       x = self.ca1(x)  # 应用通道注意力x = self.pool1(x)       # ---------- 卷积块2处理 ----------x = self.conv2(x)       x = self.bn2(x)         x = self.relu2(x)       x = self.ca2(x)  # 应用通道注意力x = self.pool2(x)       # ---------- 卷积块3处理 ----------x = self.conv3(x)       x = self.bn3(x)         x = self.relu3(x)       x = self.ca3(x)  # 应用通道注意力x = self.pool3(x)       # ---------- 展平与全连接层 ----------x = x.view(-1, 128 * 4 * 4)  x = self.fc1(x)           x = self.relu3(x)         x = self.dropout(x)       x = self.fc2(x)           return x  # 重新初始化模型,包含通道注意力模块
model = CNN()
model = model.to(device)  # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,        # 指定要控制的优化器(这里是Adam)mode='min',       # 监测的指标是"最小化"(如损失函数)patience=3,       # 如果连续3个epoch指标没有改善,才降低LRfactor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)# 5. 训练函数(支持学习率调度器)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):model.train()  # 设置为训练模式train_loss_history = []test_loss_history = []train_acc_history = []test_acc_history = []all_iter_losses = []iter_indices = []for epoch in range(epochs):running_loss = 0.0correct_train = 0total_train = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()# 记录Iteration损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计训练指标running_loss += iter_loss_, predicted = output.max(1)total_train += target.size(0)correct_train += predicted.eq(target).sum().item()# 每100批次打印进度if (batch_idx + 1) % 100 == 0:print(f"Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} "f"| 单Batch损失: {iter_loss:.4f}")# 计算 epoch 级指标epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct_train / total_train# 测试阶段model.eval()correct_test = 0total_test = 0test_loss = 0.0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_test# 记录历史数据train_loss_history.append(epoch_train_loss)test_loss_history.append(epoch_test_loss)train_acc_history.append(epoch_train_acc)test_acc_history.append(epoch_test_acc)# 更新学习率调度器if scheduler is not None:scheduler.step(epoch_test_loss)# 打印 epoch 结果print(f"Epoch {epoch+1} 完成 | 训练损失: {epoch_train_loss:.4f} "f"| 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%")# 绘制损失和准确率曲线plot_iter_losses(all_iter_losses, iter_indices)plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc  # 返回最终测试准确率# 训练模型(复用原有的train函数)
print("开始训练带通道注意力的CNN模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs=50)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

ps:

  • 我这里列出来的是通道注意力中的一种,SE注意力
  • 为了保证收敛方便对比性能,今日代码训练轮数较多,比较耗时
  • 目前我们终于接触到了模块,模块本质上也是对特征的进一步提取,整个深度学习就是在围绕特征提取展开的,后面会是越来越复杂的特征提取和组合步骤
  • 新增八股部分,在本讲义目录中可以看到----用问答的形式记录知识点

@浙大疏锦行

相关文章:

  • C# 日志管理功能代码
  • 浅谈python如何做接口自动化
  • Qt生成日志与以及捕获崩溃文件(mingw64位,winDbg)————附带详细解说
  • 第4天:RNN应用(心脏病预测)
  • python实战:如何对word文档的格式进行定制化排版
  • 每日八股文6.6
  • 多模态+空间智能:考拉悠然以AI+智慧灯杆,点亮城市治理新方式
  • 达梦DB操作记录
  • Splash动态渲染技术全解析:从基础到企业级应用(2025最新版)
  • 学习日记-day23-6.6
  • Linux LVM与磁盘配额
  • MySQL基本操作(续)
  • BEV和OCC学习-5:数据预处理流程
  • 【更新至2024年】2003-2024年高铁线路信息数据
  • Maven相关问题:jna版本与ES冲突 + aop失效
  • VTK|8.2.0升级到9.4.2遇到的问题及解决方法
  • 基于nacos2.5.1的MCP服务端微服务项目开发环境配置简介
  • Gemini 开发者 API 怎么用?接入指南(附示例)
  • go语言学习 第7章:数组
  • 【Bluedroid】蓝牙启动之 SMP_Init 源码解析
  • 做网站用哪个软件写比较好/网站建设公司大型
  • wordpress导航图标代码/android优化大师
  • 那个网站专门做婚纱相册/semseo
  • 网上做网站怎么赚钱吗/推广普通话作文
  • hm网上商城/百度系优化
  • 手机百度怎么解除禁止访问网站/东莞服务好的营销型网站建设