当前位置: 首页 > news >正文

基于ReAction范式的问答系统实现demo

基于ReAction范式的问答系统实现demo

参考文档

ReAct论文解读:LLM ReAct范式,在大语言模型中结合推理和动作

说明

由于我最近在做一个基于图数据库的问答系统,所以样例就以查询图数据背景,实现过程仅供参考,希望能够大家带来帮助。

源码

import os
import json
from typing import Generator, Optional, Dict, Any
from neo4j import GraphDatabase
from openai import OpenAI
from dotenv import load_dotenvload_dotenv()# ----------------------------
# Neo4j 工具类
# ----------------------------
class Neo4jSearchTool:def __init__(self):self.driver = GraphDatabase.driver(os.getenv("NEO4J_URI"),auth=(os.getenv("NEO4J_USER"),os.getenv("NEO4J_PASSWORD")))def run(self, query: str) -> str:try:with self.driver.session() as session:result = session.run(query)data = [dict(record) for record in result]return json.dumps(data, ensure_ascii=False) if data else "[]"except Exception as e:return f"ERROR: {str(e)}"class Neo4jSchemaTool:def __init__(self, driver):self.driver = driverdef get_node_schema(self, session):q = """CALL db.schema.nodeTypeProperties()YIELD nodeType, propertyName, propertyTypesRETURN nodeType, propertyName, propertyTypes"""schema = {}for rec in session.run(q):label = rec["nodeType"].strip(":`")prop = rec["propertyName"]types = ", ".join(rec["propertyTypes"]) or "Unknown"schema.setdefault(label, {})[prop] = typesreturn schema# ----------------------------------------------------------------------def get_relationship_schema(self, session):"""For each relType: collect property definitions + a sampled (srcLabel, tgtLabel)."""# 1) property mapq_props = """CALL db.schema.relTypeProperties()YIELD relType, propertyName, propertyTypesRETURN relType, propertyName, propertyTypes"""rel_schema = {}for rec in session.run(q_props):rtype = rec["relType"].strip(":`")prop = rec["propertyName"]if prop:types = ", ".join(rec["propertyTypes"]) or "Unknown"rel_schema.setdefault(rtype, {})[prop] = types# 2) sample endpoints for each relationship typefor rtype in rel_schema:q_sample = f"""MATCH (s)-[r:`{rtype}`]->(t)WITH labels(s)[0] AS src, labels(t)[0] AS tgtRETURN src, tgt LIMIT 1"""rec = session.run(q_sample).single()if rec:rel_schema[rtype]["_endpoints"] = [rec["src"], rec["tgt"]]else:  # no relationship instance foundrel_schema[rtype]["_endpoints"] = ["Unknown", "Unknown"]return rel_schemadef get_schema(self) -> dict:"""提取数据库中的所有标签、关系和属性"""with self.driver.session() as session:# 获取所有节点标签labels = self.get_node_schema(session)rel_types = self.get_relationship_schema(session)return {"NodeTypes": labels,"RelationshipTypes": rel_types}def format_schema_prompt(self) -> str:"""将schema转换为自然语言描述"""schema = self.get_schema()prompt = "数据库包含以下结构:\n"# 标签和属性prompt += "## 节点类型\n"prompt += json.dumps(schema["NodeTypes"],ensure_ascii=False)# 关系prompt += "\n## 关系类型\n"prompt += json.dumps(schema["RelationshipTypes"],ensure_ascii=False)return promptclass AnswerValidator:@staticmethoddef is_valid_answer(observation: str) -> bool:"""检查工具返回是否包含有效答案"""if observation.startswith("ERROR") or observation == "[]":return Falsetry:data = json.loads(observation)if isinstance(data, list) and len(data) > 0:first_item = data[0]# 检查是否有非空值return any(v for v in first_item.values() if v not in [None, ""])return Falseexcept:return False@staticmethoddef should_terminate(llm_response: str) -> bool:"""通过LLM判断是否应该终止"""prompt = f"""判断以下模型响应是否包含最终答案:
响应内容:{llm_response}只需返回true或false:"""response = OpenAI().chat.completions.create(model="deepseek-chat",messages=[{"role": "user", "content": prompt}],temperature=0)return "true" in response.choices[0].message.content.lower()# ----------------------------
# ReAct 引擎
# ----------------------------
class ReActQASystem:def __init__(self):self.llm = OpenAI()neo4j_driver = GraphDatabase.driver(os.getenv("NEO4J_URI"),auth=(os.getenv("NEO4J_USER"), os.getenv("NEO4J_PASSWORD")))self.tools = {"neo4j_search": Neo4jSearchTool(),"get_schema": Neo4jSchemaTool(neo4j_driver)}self.schema_prompt = self.tools["get_schema"].format_schema_prompt()self.max_steps = 5def _build_prompt(self, query: str, scratchpad: str = "") -> str:base_prompt = f"""你是一个审计专家,需要根据数据库结构编写准确的Cypher查询。{self.schema_prompt}可用工具:- neo4j_search: 执行Cypher查询,输入应为JSON格式的{{"query": "MATCH..."}}当前问题:{query}历史步骤:{scratchpad}严格按格式响应:Thought: 分析问题并确认需要查询的标签和关系Action:```json{{"action": "工具名", "action_input": {{...}}}}```"""return base_promptdef execute(self, query: str) -> Generator[str, None, None]:scratchpad = ""for step in range(self.max_steps):# 调用LLM生成响应prompt = self._build_prompt(query, scratchpad)print(f"LLM prompt: {prompt}")response = self.llm.chat.completions.create(model="deepseek-chat",messages=[{"role": "user", "content": prompt}],temperature=0)content = response.choices[0].message.contentprint(f"LLM Response: {content}")print(f"================================================")# 解析响应thought, action = self._parse_response(content)scratchpad += f"\n{content}\n"if not action:yield f"Final Answer: {thought}"break# 执行工具调用tool_name = action["action"]if AnswerValidator.should_terminate(action["action_input"]):yield f"Final Answer: {action['action_input']}"breakelif tool_name in self.tools:tool_result = self.tools[tool_name].run(action["action_input"]["query"])observation = f"Observation: {tool_result}"scratchpad += observation + "\n"yield observationelse:yield f"ERROR: 未知工具 {tool_name}"def _parse_response(self, text: str) -> tuple[str, Optional[Dict]]:thought = ""action = None# 提取Thought部分thought_start = text.find("Thought:") + len("Thought:")thought_end = text.find("Action:")if thought_start >= 0 and thought_end >= 0:thought = text[thought_start:thought_end].strip()# 提取Action部分action_start = text.find("```json") + len("```json")action_end = text.find("```", action_start)if action_start >= 0 and action_end >= 0:try:action = json.loads(text[action_start:action_end].strip())except json.JSONDecodeError:passreturn thought, action# ----------------------------
# 主程序
# ----------------------------
def main():qa_system = ReActQASystem()print("审计问答系统已启动(输入quit退出)")while True:query = input("\n用户提问: ")if query.lower() == "quit":breakprint("\n系统响应:")for response in qa_system.execute(query):print(response)if __name__ == "__main__":main()

总结

欢迎大家留言,讨论

相关文章:

  • 【动手学MCP从0到1】2.5 MCP中的Context日志输出、进度汇报和服务端调用客户端的大模型项目实现步骤详解
  • 【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
  • 视频监控平台建设方案
  • 精益数据分析(95/126):Socialight的定价转型启示——B2B商业模式的价格策略与利润优化
  • 智能制造数字孪生全要素交付一张网:智造中枢,孪生领航,共建智造生态共同体
  • 大模型安全测试报告:千问、GPT 全系列、豆包、Claude 表现优异,DeepSeek、Grok-3 与 Kimi 存在安全隐患
  • yolo 训练 中间可视化
  • 视频监控管理平台EasyCVR与V4分析网关对接后告警照片的清理优化方案
  • Fullstack 面试复习笔记:Spring / Spring Boot / Spring Data / Security 整理
  • 本地部署企业邮箱,让企业办公更安全高效
  • 华为云Flexus+DeepSeek征文|基于华为云Flexus X和DeepSeek-R1打造个人知识库问答系统
  • Github 2025-06-06 Java开源项目日报Top10
  • [BIOS]VSCode zx-6000 编译问题
  • (一)上市企业实施IPD成功案例分享之——方太
  • OpenCV 图像色彩空间转换与抠图
  • 网络流学习笔记 - 最大流最小割
  • JVM——打开JVM后门的钥匙:反射机制
  • Javascript 编程基础(5)面向对象 | 5.1、构造函数实例化对象
  • RFID推动新能源汽车零部件生产系统管理应用案例
  • 汽车免拆诊断案例 | 2010款捷豹XFL车制动警告灯、DSC警告灯异常点亮
  • 传媒公司主要做什么/优化网络培训
  • 至尊传奇手游官方正版下载/娄底seo
  • 宜兴网站设计/百度指数里的资讯指数是什么
  • 做网站哪家好公司/网络服务商
  • 北京效果图公司/关键词排名优化怎么样
  • 黄骅港站/南宁seo多少钱报价