当前位置: 首页 > news >正文

深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(2)

前言

《深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(1)》里面我只是提到了对conv1层进行剪枝,只是为了验证这个剪枝的整个过程,但是后面也有提到:仅裁剪 conv1层的影响极大,原因如下:

  • 底层特征的重要性 : conv1输出的是最基础的图像特征,所有后续层的特征均基于此生成。裁剪 conv1 会直接限制后续所有层的特征表达能力。
  • 结构连锁反应 : conv1的输出通道减少会触发 bn1layer1.0.conv1downsample 等多个模块的调整,任何一个模块的调整失误(如通道数不匹配、参数初始化不当)都会导致整体性能下降。
    虽然,在例子中,我们只是简单的进行了验证,发现效果也不是很差,但是如果具体到自己的数据,或者更加复杂的特征或者模型,可能就会影响到了整体的性能,因此,我们在原有的基础上做了如下的改动:
  1. 剪枝目标层调整 :将 conv1 改为 layer2.0.conv1 ,减少对底层特征的破坏。
  2. 通道评估优化 :通过前向传播收集激活值,优先剪枝激活值低的通道,更符合实际特征贡献。
  3. 微调策略改进 :动态解冻剪枝层及关联的BN、downsample层,学习率降低(0.0001),微调轮次增加(10轮),确保参数充分适应。

这些修改可显著提升剪枝后模型的稳定性和准确率。建议运行时观察微调阶段的Loss是否持续下降,若下降缓慢可进一步降低学习率(如0.00001)。
所有代码都在这:https://gitee.com/NOON47/model_prune

详细改动

  1. 剪枝目标层调整 :将 conv1 改为 layer2.0.conv1 ,减少对底层特征的破坏。
    layer_to_prune = 'layer2.0.conv1'  # 显式定义要剪枝的层名pruned_model = prune_conv_layer(model, layer_to_prune, amount=0.2)
  1. 通道评估优化 :通过前向传播收集激活值,优先剪枝激活值低的通道,更符合实际特征贡献。
    model.eval()with torch.no_grad():test_input = torch.randn(128, 3, 32, 32).to(device)  # 模拟 CIFAR10 输入features = []def hook_fn(module, input, output):features.append(output)handle = layer.register_forward_hook(hook_fn)model(test_input)handle.remove()activation = features[0]  # shape: [128, out_channels, H, W]channel_importance = activation.mean(dim=(0, 2, 3))  # 按通道求平均激活值num_channels = weight.shape[0]num_prune = int(num_channels * amount)_, indices = torch.topk(channel_importance, k=num_prune, largest=False)mask = torch.ones(num_channels, dtype=torch.bool)mask[indices] = False  # 生成剪枝掩码
  1. 微调策略改进 :动态解冻剪枝层及关联的BN、downsample层,学习率降低(0.0001),微调轮次增加(10轮),确保参数充分适应。
    print("开始微调剪枝后的模型")# 新增:根据剪枝层动态解冻相关层(假设剪枝层为layer2.0.conv1)pruned_layer_prefix = layer_to_prune.rpartition('.')[0]  # 例如 'layer2.0'for name, param in pruned_model.named_parameters():if (pruned_layer_prefix in name) or ('fc' in name) or ('bn' in name):  # 解冻剪枝层、BN层和fc层param.requires_grad = Trueelse:param.requires_grad = Falseoptimizer = optim.Adam(filter(lambda p: p.requires_grad, pruned_model.parameters()), lr=0.0001)  # 微调学习率降低pruned_model = train_model(pruned_model, train_loader, criterion, optimizer, device, epochs=10)  # 增加微调轮次

完整的裁剪函数:

def prune_conv_layer(model, layer_name, amount=0.2):device = next(model.parameters()).devicelayer = dict(model.named_modules())[layer_name]weight = layer.weight.data# 基于激活值的通道重要性评估model.eval()with torch.no_grad():test_input = torch.randn(128, 3, 32, 32).to(device)  # 模拟 CIFAR10 输入features = []def hook_fn(module, input, output):features.append(output)handle = layer.register_forward_hook(hook_fn)model(test_input)handle.remove()activation = features[0]  # shape: [128, out_channels, H, W]channel_importance = activation.mean(dim=(0, 2, 3))  # 按通道求平均激活值num_channels = weight.shape[0]num_prune = int(num_channels * amount)_, indices = torch.topk(channel_importance, k=num_prune, largest=False)mask = torch.ones(num_channels, dtype=torch.bool)mask[indices] = False  # 生成剪枝掩码# 创建并替换新卷积层new_conv = nn.Conv2d(in_channels=layer.in_channels,out_channels=num_channels - num_prune,kernel_size=layer.kernel_size,stride=layer.stride,padding=layer.padding,bias=layer.bias is not None).to(device)new_conv.weight.data = layer.weight.data[mask]  # 应用掩码剪枝权重if layer.bias is not None:new_conv.bias.data = layer.bias.data[mask]# 替换原始卷积层parent_name, sep, name = layer_name.rpartition('.')parent = model.get_submodule(parent_name)setattr(parent, name, new_conv)# 仅处理首层 conv1 的特殊逻辑if layer_name == 'conv1':# 更新首层 BN 层(bn1)bn1 = model.bn1new_bn1 = nn.BatchNorm2d(new_conv.out_channels).to(device)with torch.no_grad():new_bn1.weight.data = bn1.weight.data[mask].clone()new_bn1.bias.data = bn1.bias.data[mask].clone()new_bn1.running_mean.data = bn1.running_mean.data[mask].clone()new_bn1.running_var.data = bn1.running_var.data[mask].clone()model.bn1 = new_bn1# 处理 layer1.0 的 downsample 层(若不存在则创建)block = model.layer1[0]if not hasattr(block, 'downsample') or block.downsample is None:# 创建 1x1 卷积 + BN 用于通道匹配downsample_conv = nn.Conv2d(in_channels=new_conv.out_channels,out_channels=block.conv2.out_channels,  # 与主路径输出通道一致(ResNet18 为 64)kernel_size=1,stride=1,bias=False).to(device)# 初始化权重(使用原卷积层的统计量)with torch.no_grad():downsample_conv.weight.data = layer.weight.data.mean(dim=(2,3), keepdim=True)  # 原卷积核均值初始化downsample_bn = nn.BatchNorm2d(downsample_conv.out_channels).to(device)with torch.no_grad():downsample_bn.weight.data.fill_(1.0)downsample_bn.bias.data.zero_()downsample_bn.running_mean.data.zero_()downsample_bn.running_var.data.fill_(1.0)block.downsample = nn.Sequential(downsample_conv, downsample_bn)print("✅ 为 layer1.0 添加新的 downsample 层")else:# 调整已有 downsample 层的输入通道downsample_conv = block.downsample[0]downsample_conv.in_channels = new_conv.out_channelsdownsample_conv.weight = nn.Parameter(downsample_conv.weight.data[:, mask, :, :].clone()).to(device)# 更新对应的 BN 层downsample_bn = block.downsample[1]new_downsample_bn = nn.BatchNorm2d(downsample_conv.out_channels).to(device)with torch.no_grad():new_downsample_bn.weight.data = downsample_bn.weight.data.clone()new_downsample_bn.bias.data = downsample_bn.bias.data.clone()new_downsample_bn.running_mean.data = downsample_bn.running_mean.data.clone()new_downsample_bn.running_var.data = downsample_bn.running_var.data.clone()block.downsample[1] = new_downsample_bn# 同步 layer1.0.conv1 的输入通道target_conv = model.layer1[0].conv1if target_conv.in_channels != new_conv.out_channels:print(f"同步 layer1.0.conv1 输入通道: {target_conv.in_channels}{new_conv.out_channels}")target_conv.in_channels = new_conv.out_channelstarget_conv.weight = nn.Parameter(target_conv.weight.data[:, mask, :, :].clone()).to(device)else:# 中间层剪枝逻辑(如 layer2.0.conv1)block_prefix = layer_name.rsplit('.', 1)[0]  # 提取 block 前缀(如 'layer2.0')block = model.get_submodule(block_prefix)     # 获取对应的 block(如 layer2.0)# 更新当前 block 内的 BN 层(conv1 对应 bn1,conv2 对应 bn2)target_bn_name = f"{block_prefix}.bn1" if 'conv1' in layer_name else f"{block_prefix}.bn2"try:target_bn = model.get_submodule(target_bn_name)new_bn = nn.BatchNorm2d(new_conv.out_channels).to(device)with torch.no_grad():new_bn.weight.data = target_bn.weight.data[mask].clone()new_bn.bias.data = target_bn.bias.data[mask].clone()new_bn.running_mean.data = target_bn.running_mean.data[mask].clone()new_bn.running_var.data = target_bn.running_var.data[mask].clone()setattr(block, target_bn_name.split('.')[-1], new_bn)  # 替换原 BN 层print(f"✅ 更新剪枝层 {layer_name} 对应的 BN 层 {target_bn_name}")except AttributeError:print(f"⚠️ 未找到剪枝层 {layer_name} 对应的 BN 层,跳过 BN 更新")# 新增:同步后续卷积层的输入通道(如 conv1 后调整 conv2)if 'conv1' in layer_name:next_conv = block.conv2if next_conv.in_channels != new_conv.out_channels:print(f"同步 {block_prefix}.conv2 输入通道: {next_conv.in_channels}{new_conv.out_channels}")next_conv.in_channels = new_conv.out_channelsnext_conv.weight = nn.Parameter(next_conv.weight.data[:, mask, :, :].clone()).to(device)  # 按剪枝掩码筛选输入通道权重# 可选:如果存在 downsample 层,调整其输入通道(根据实际需求启用)# if hasattr(block, 'downsample') and block.downsample is not None:#     downsample_conv = block.downsample[0]#     downsample_conv.in_channels = new_conv.out_channels#     downsample_conv.weight = nn.Parameter(downsample_conv.weight.data[:, mask, :, :].clone()).to(device)#     print(f"✅ 调整剪枝层 {layer_name} 关联的 downsample 层输入通道")# 验证前向传播with torch.no_grad():test_input = torch.randn(1, 3, 32, 32).to(device)try:model(test_input)print("✅ 前向传播验证通过")except Exception as e:print(f"❌ 验证失败: {str(e)}")raisereturn model

改动后结果

经过改动后, 增加微调轮次,得到的结果如下:

剪枝前模型大小信息:
==========================================================================================
Total params: 11,181,642
Trainable params: 11,181,642
Non-trainable params: 0
Total mult-adds (M): 37.03
==========================================================================================
Input size (MB): 0.01
Forward/backward pass size (MB): 0.81
Params size (MB): 44.73
Estimated Total Size (MB): 45.55
==========================================================================================
原始模型准确率: 81.42%剪枝后模型大小信息:
==========================================================================================
Total params: 11,138,392
Trainable params: 11,138,392
Non-trainable params: 0
Total mult-adds (M): 36.33
==========================================================================================
Input size (MB): 0.01
Forward/backward pass size (MB): 0.80
Params size (MB): 44.55
Estimated Total Size (MB): 45.37
==========================================================================================
剪枝后模型准确率: 83.28%

个人认为,这个才是比较符合实际应用的。

相关文章:

  • 代码训练LeetCode(23)随机访问元素
  • 《操盘实战》速读笔记
  • AI编程助手入门指南:GitHub Copilot、Cursor与Claude的安装与基础使用
  • 轻松掌控硬件接口:LuatIO可视化工具,物联网开发的“效率加速器”!
  • 动态规划-1035.不相交的线-力扣(LeetCode)
  • 【学习分享】shell基础-数组
  • Day45 Python打卡训练营
  • minio入门学习
  • 【AI学习】KV-cache和page attention
  • 如何使用 Redis 快速实现布隆过滤器?
  • 守护进程实验——autoDL
  • ABP VNext 在 Kubernetes 中的零停机蓝绿发布
  • Java-IO流之转换流详解
  • 高性能分布式消息队列系统(三)
  • STM32 NVIC中断控制器
  • 【LLIE专题】NTIRE 2025 低照度图像增强第二名方案
  • JS深入学习 — 循环、函数、数组、字符串、Date对象,Math对象
  • 【Algorithm】Segment Tree 简单介绍
  • 图着色问题(回溯)
  • Redisson简明教程—你家的锁芯该换了
  • html做网站实战教程/微信推广方案
  • 保定网站建设冀icp/手机端网站排名
  • 创建商务站点的主要工作/色盲眼中的世界
  • 设计页面宽度/郑州seo代理外包
  • 专门做杂志的网站/简述什么是seo
  • 查看服务器上的网站/网站seo哪家做的好