当前位置: 首页 > news >正文

PostgreSQL的扩展 pg_buffercache

PostgreSQL的扩展 pg_buffercache

pg_buffercache 是 PostgreSQL 提供的一个关键性能监控扩展,用于观察共享缓冲区中的页面缓存情况。

一、扩展概述

  • 功能:实时查看共享缓冲区的使用情况
  • 用途
    • 性能分析与调优
    • 缓存命中率分析
    • 识别热点数据
    • 内存配置优化
  • 版本兼容:PostgreSQL 8.1+

二、安装与基本使用

1. 安装方法

CREATE EXTENSION pg_buffercache;-- 验证安装
SELECT * FROM pg_available_extensions WHERE name = 'pg_buffercache';

2. 核心视图说明

-- 查看视图结构
\d pg_buffercache-- 主要字段说明:
/*
bufferid    - 缓冲区ID
relfilenode - 关联的文件节点
reltablespace - 表空间OID
reldatabase - 数据库OID
relblocknumber - 块号
isdirty     - 是否为脏页
usagecount  - 使用计数(时钟算法)
pinning_backend - 钉住该缓冲区的后端PID
*/

三、关键查询示例

1. 查看缓存分布

SELECT c.relname,count(*) AS buffers,round(100.0 * count(*) / (SELECT setting FROM pg_settings WHERE name='shared_buffers')::integer, 2) AS "% of cache"
FROM pg_buffercache b
JOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)
GROUP BY c.relname
ORDER BY buffers DESC
LIMIT 10;

2. 识别热点表

SELECT c.relname,b.usagecount,count(*) AS buffers
FROM pg_buffercache b
JOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)
GROUP BY c.relname, b.usagecount
ORDER BY c.relname, b.usagecount;

3. 检查脏页情况

SELECT c.relname,count(*) FILTER (WHERE b.isdirty) AS dirty_buffers,count(*) AS total_buffers
FROM pg_buffercache b
JOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)
GROUP BY c.relname
HAVING count(*) FILTER (WHERE b.isdirty) > 0
ORDER BY dirty_buffers DESC;

四、高级分析技术

1. 缓存命中率计算

WITH cache_data AS (SELECT c.relname,count(*) AS cached_blocksFROM pg_buffercache bJOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)GROUP BY c.relname
),
table_stats AS (SELECT relname,heap_blks_read + heap_blks_hit AS total_read,heap_blks_hit AS hitsFROM pg_statio_user_tables
)
SELECT t.relname,t.hits,t.total_read,round(t.hits * 100.0 / NULLIF(t.total_read, 0), 2) AS hit_ratio,c.cached_blocks
FROM table_stats t
JOIN cache_data c ON t.relname = c.relname
ORDER BY t.total_read DESC;

2. 索引缓存效率分析

SELECT c.relname AS index_name,count(*) AS cached_blocks,pg_size_pretty(count(*) * 8192) AS cached_size
FROM pg_buffercache b
JOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)
WHERE c.relkind = 'i'
GROUP BY c.relname
ORDER BY cached_blocks DESC;

五、生产环境应用

1. 共享内存配置调优

-- 计算当前缓存利用率
SELECT (SELECT setting FROM pg_settings WHERE name='shared_buffers')::int AS shared_buffers,count(*) AS used_buffers,round(count(*) * 100.0 / (SELECT setting FROM pg_settings WHERE name='shared_buffers')::int, 2) AS "% used"
FROM pg_buffercache;-- 调整建议(需重启):
-- shared_buffers = 25% of total RAM (for dedicated DB servers)

2. 检查缓存竞争

SELECT c.relname,count(DISTINCT b.pinning_backend) AS pinned_by,count(*) AS total_blocks
FROM pg_buffercache b
JOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)
WHERE b.pinning_backend IS NOT NULL
GROUP BY c.relname
ORDER BY pinned_by DESC;

六、与其它工具集成

1. 结合pg_stat_statements

-- 找出高频查询访问的表
WITH top_tables AS (SELECT query,(regexp_matches(query, 'FROM\s+(\w+)', 'gi'))[1] AS tablenameFROM pg_stat_statementsORDER BY calls DESCLIMIT 10
)
SELECT t.tablename,count(*) AS buffers,s.query
FROM pg_buffercache b
JOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)
JOIN top_tables t ON c.relname = t.tablename
JOIN pg_stat_statements s ON t.query = s.query
GROUP BY t.tablename, s.query;

2. 导出缓存快照

# 生成缓存报告
psql -c "COPY (SELECT * FROM pg_buffercache) TO '/tmp/buffer_cache_snapshot.csv' WITH CSV HEADER"

七、性能注意事项

  1. 查询开销

    • pg_buffercache需要获取共享缓冲区锁
    • 生产环境避免高频查询(>1次/分钟)
    • 建议在维护窗口或低峰期执行
  2. 替代方案

    -- 轻量级替代(不显示具体内容)
    SELECT * FROM pg_stat_bgwriter;-- 检查点活动监控
    SELECT * FROM pg_stat_checkpoints;
    

八、扩展限制

  1. 需要超级用户权限
  2. 仅显示当前数据库集群的缓存
  3. 不显示系统目录缓存细节(除非明确查询)
  4. 结果具有瞬时性,可能很快变化

pg_buffercache 是PostgreSQL性能调优的核心工具之一,合理使用可以帮助DBA优化内存配置、识别性能瓶颈,但需要注意查询本身对系统性能的影响。

更详细的内容请查看官方文档:

https://www.postgresql.org/docs/17/pgbuffercache.html

相关文章:

  • 第5篇《中间件负载均衡与连接池管理机制设计》
  • 银行用户评分规则 深度学习
  • Linux容器篇、第一章_01Linux系统下 Docker 安装与镜像部署全攻略
  • 分布式爬虫代理IP使用技巧
  • C++性能优化指南
  • go的工具库:github.com/expr-lang/expr
  • 突破数据孤岛:StarRocks联邦查询实战指南
  • 【发布实录】云原生+AI,助力企业全球化业务创新
  • Java设计模式:责任链模式
  • Linux 特殊权限位详解:SetUID, SetGID, Sticky Bit
  • 数据结构第一章
  • 【RAG优化】rag整体优化建议
  • [ Qt ] | 与系统相关的操作(二):键盘、定时器、窗口移动和大小
  • 跟着deepseek浅学分布式事务(2) - 两阶段提交(2PC)
  • yum更换阿里云的镜像源
  • 保险丝选型
  • 树莓派系列教程第九弹:Cpolar内网穿透搭建NAS
  • 云数据库选型指南:关系型 vs NoSQL vs NewSQL的企业决策
  • 【开源工具】 黑客帝国系列系统监控工具:基于PyQt5的全方位资源监控系统
  • 【Linux】编译器gcc/g++及其库的详细介绍
  • 泰安市网站建设/灰色词排名上首页
  • wordpress 插件 文本/hyein seo官网
  • 迈网科技 官方网站/百度网盘下载速度
  • 做销售的如何在网站/上海单个关键词优化
  • 263企业邮箱登陆入囗/网站seo关键词排名推广
  • 婚庆网站设计/疫情优化调整