当前位置: 首页 > news >正文

Python训练营打卡Day43

DAY 43 复习日

作业:
kaggle找到一个图像数据集,用cnn网络进行训练并且用grad-cam做可视化

@浙大疏锦行


选择 Dogs vs Cats 数据集(Kaggle经典二分类问题)

完整代码实现

1. 设置环境并加载数据

import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets, models
from torch.utils.data import DataLoader, random_split
import matplotlib.pyplot as plt
import cv2
from PIL import Image# 检查GPU可用性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")# 数据预处理
transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])# 加载数据集
dataset = datasets.ImageFolder('./dogs-vs-cats/train', transform=transform)# 划分训练集和验证集(80%训练,20%验证)
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)# 查看类别
print(f"Classes: {dataset.classes}")

2. 定义CNN模型(使用预训练的ResNet18)

class DogCatCNN(nn.Module):def __init__(self):super(DogCatCNN, self).__init__()# 使用预训练的ResNet18self.resnet = models.resnet18(pretrained=True)# 冻结所有卷积层参数(可选)for param in self.resnet.parameters():param.requires_grad = False# 替换最后的全连接层(适应我们的二分类问题)num_features = self.resnet.fc.in_featuresself.resnet.fc = nn.Sequential(nn.Linear(num_features, 256),nn.ReLU(),nn.Dropout(0.5),nn.Linear(256, 2)  # 2 classes: dog, cat)def forward(self, x):return self.resnet(x)model = DogCatCNN().to(device)

3. 训练函数

def train_model(model, criterion, optimizer, num_epochs=10):best_acc = 0.0for epoch in range(num_epochs):print(f'Epoch {epoch+1}/{num_epochs}')print('-' * 10)# 训练阶段model.train()running_loss = 0.0running_corrects = 0for inputs, labels in train_loader:inputs = inputs.to(device)labels = labels.to(device)optimizer.zero_grad()outputs = model(inputs)_, preds = torch.max(outputs, 1)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item() * inputs.size(0)running_corrects += torch.sum(preds == labels.data)epoch_loss = running_loss / len(train_loader.dataset)epoch_acc = running_corrects.double() / len(train_loader.dataset)print(f'Train Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')# 验证阶段model.eval()val_loss = 0.0val_corrects = 0with torch.no_grad():for inputs, labels in val_loader:inputs = inputs.to(device)labels = labels.to(device)outputs = model(inputs)_, preds = torch.max(outputs, 1)loss = criterion(outputs, labels)val_loss += loss.item() * inputs.size(0)val_corrects += torch.sum(preds == labels.data)val_loss = val_loss / len(val_loader.dataset)val_acc = val_corrects.double() / len(val_loader.dataset)print(f'Val Loss: {val_loss:.4f} Acc: {val_acc:.4f}\n')# 保存最佳模型if val_acc > best_acc:best_acc = val_acctorch.save(model.state_dict(), 'best_model.pth')print(f'Best val Acc: {best_acc:.4f}')return model# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练模型
model = train_model(model, criterion, optimizer, num_epochs=10)

4. Grad-CAM可视化实现

class GradCAM:def __init__(self, model, target_layer):self.model = modelself.target_layer = target_layerself.gradients = Noneself.activations = None# 注册钩子target_layer.register_forward_hook(self.save_activations)target_layer.register_backward_hook(self.save_gradients)def save_activations(self, module, input, output):self.activations = outputdef save_gradients(self, module, grad_input, grad_output):self.gradients = grad_output[0]def forward(self, x):return self.model(x)def __call__(self, x, class_idx=None):# 前向传播output = self.forward(x)if class_idx is None:class_idx = torch.argmax(output, dim=1).item()# 反向传播self.model.zero_grad()one_hot = torch.zeros_like(output)one_hot[0][class_idx] = 1output.backward(gradient=one_hot, retain_graph=True)# 计算权重pooled_gradients = torch.mean(self.gradients, dim=[0, 2, 3])# 加权特征图activations = self.activations[0]for i in range(activations.size(0)):activations[i, :, :] *= pooled_gradients[i]# 生成热图heatmap = torch.mean(activations, dim=0).detach().cpu().numpy()heatmap = np.maximum(heatmap, 0)heatmap /= np.max(heatmap)return heatmapdef visualize_gradcam(model, image_path, target_layer):# 加载并预处理图像img = Image.open(image_path).convert('RGB')img_tensor = transform(img).unsqueeze(0).to(device)# 获取预测类别model.eval()with torch.no_grad():output = model(img_tensor)pred_class = torch.argmax(output, dim=1).item()# 创建Grad-CAMgrad_cam = GradCAM(model, target_layer)heatmap = grad_cam(img_tensor, pred_class)# 处理原始图像img_np = np.array(img.resize((224, 224)))img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)# 生成热图叠加heatmap = cv2.resize(heatmap, (img_np.shape[1], img_np.shape[0]))heatmap = np.uint8(255 * heatmap)heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)superimposed_img = heatmap * 0.4 + img_np * 0.6superimposed_img = np.clip(superimposed_img, 0, 255).astype(np.uint8)# 显示结果plt.figure(figsize=(10, 5))plt.subplot(1, 2, 1)plt.imshow(cv2.cvtColor(img_np, cv2.COLOR_BGR2RGB))plt.title(f'Original (Pred: {dataset.classes[pred_class]})')plt.axis('off')plt.subplot(1, 2, 2)plt.imshow(cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB))plt.title('Grad-CAM')plt.axis('off')plt.show()# 选择目标层(ResNet的最后一个卷积层)
target_layer = model.resnet.layer4[-1].conv2# 可视化示例
test_image_path = './dogs-vs-cats/train/dog.100.jpg' 
visualize_gradcam(model, test_image_path, target_layer)

相关文章:

  • lanqiaoOJ 1508:N皇后问题 ← dfs
  • pcie 日常问答-20250528
  • 域自适应 (Domain Adaptation,DA)基础
  • Qt开发:QThreadPool的介绍和使用
  • 多模态大模型中的Projector模块深度解析
  • 5月底 端午节
  • 红黑树与红黑树的插入——用C++实现
  • 查询去重使用 DISTINCT 的性能分析
  • 图神经网络原理及应用简介
  • VS2022下C++ Boost库安装与使用使用
  • 血管的三维重建
  • 【Java】mybatis-plus乐观锁与Spring重试机制
  • 【Typst】5.文档结构元素与函数
  • 【计算机网络 第8版】谢希仁编著 第六章应用层 题型总结1 编码
  • JavaScript 递归构建树形结构详解
  • 闲谈PMIC和SBC
  • Message=“HalconDotNet.HHandleBase”的类型初始值设定项引发异常
  • v4l2常见操作-查看当前摄像头信息,帧率,控制参数,分辨率,支持格式,抓图实践等
  • 【2025年B卷】OD-100分-斗地主之顺子
  • 【大模型:知识图谱】--3.py2neo连接图数据库neo4j
  • 正版视频素材网站/汕头网站建设技术外包
  • 想做网站怎么做/杭州seo博客
  • 公司网站开发视频/软文例文 经典软文范例
  • 网站真人客服/推广普通话内容100字
  • 福州网站建设找百诚互联/营销网站
  • 网站运营方案案例/汕头网络营销公司