当前位置: 首页 > news >正文

【机器人】复现 Embodied-Reasoner 具身推理 | 具身任务 深度推理模型 多模态场景 长远决策 多轮互动

Embodied-Reasoner 是一个多模态具身模型,它将 o1 的深度推理能力扩展到具身交互任务

可以在 AI2THOR 仿真中执行复杂的任务,例如搜索隐藏物体、操纵 和 运输物品

具有以下的功能:

  • 🤔 深度推理能力,例如分析空间推理反思规划
  • 🔄 交错多模态处理能力,特别是处理长序列的交错图像文本上下文
  • 🏠 环境互动能力,使其能够自主观察环境、探索房间并寻找隐藏物体
  • 开源模型发布 7B/2B 尺寸
  • 开源数据集🤗 Hugging Face:9.3k 条交错的观察-推理-行动轨迹,包括 64K 张图像和 8M 个思想标记 

本文分享Embodied-Reasoner复现的模型推理、生成任务和数据的过程~

1、创建Conda环境

首先创建一个Conda环境,名字为embodied-reasoner,python版本为3.9

进入embodied-reasoner环境

conda create -n embodied-reasoner python=3.9
conda activate embodied-reasoner

然后下载代码,进入代码工程:https://github.com/zwq2018/embodied_reasoner

git clone https://github.com/zwq2018/embodied_reasoner.git
cd embodied_reasoner

2、安装ai2thor模拟器和相关依赖

编辑requirements.txt,修改为下面内容:

ai2thor==5.0.0
Flask==3.1.0
opencv-python==4.7.0.72
accelerate==1.3.0
FlagEmbedding==1.3.4
openai==1.60.0
opencv-python-headless==4.11.0.86
peft==0.14.0
qwen-vl-utils==0.0.8
safetensors==0.5.2
sentence-transformers==3.4.1
sentencepiece==0.2.0
tiktoken==0.7.0
tokenizers==0.21.0

然后进行安装~

pip install -r requirements.txt

3、安装torch 和 torchvision

首先用nvcc -V查询CUDA的版本,比如系统使用的12.1版本的

(embodied-reasoner) lgp@lgp-MS-7E07:~/2025_project/embodied_reasoner$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Mon_Apr__3_17:16:06_PDT_2023
Cuda compilation tools, release 12.1, V12.1.105
Build cuda_12.1.r12.1/compiler.32688072_0

然后安装与cuda版本对应的torch

pip install torch==2.4.0+cu121 torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu121

因为后续安装的flash_attn需要CUDA和torch进行编译的,这里的版本需要对应上

4、安装flash_attn

执行下面命令进行安装:

pip install flash_attn==2.7.4.post1

安装成功会打印信息:

  Building wheel for flash_attn (setup.py) ... doneCreated wheel for flash_attn: filename=flash_attn-2.7.4.post1-cp39-cp39-linux_x86_64.whl size=187787224 sha256=8cbee35b7faaad89436c8855e5de8881f5b04962cf066e6bc12a81947dddbe4cStored in directory: /home/lgp/.cache/pip/wheels/a4/e3/79/560592cf99bd2bd893a372eee64a31c0bd903bc236a1a98e00
Successfully built flash_attn
Installing collected packages: flash_attn
Successfully installed flash_attn-2.7.4.post1

5、补丁安装

实际运行时,发现还缺少一些库(matplotlib,huggingface_hub等),需要进行安装

pip install matplotlib huggingface_hub openai

还需要安装Vulkan,在可视化时需要用到

# 安装Vulkan工具包和运行时​
sudo apt update
sudo apt install vulkan-tools vulkan-utils mesa-vulkan-drivers libvulkan-dev
# ​验证Vulkan安装​
vulkaninfo --summary

6、下载“通义千问”模型权重

这里选择 2.5-VL-3B-Instruct版本的,如果用其他模型也可以的

使用huggingface_hub进行下载,执行命令:

huggingface-cli download --resume-download Qwen/Qwen2.5-VL-3B-Instruct --local-dir ./Qwen2.5-VL-3B-Instruct

官网地址:https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct/tree/main 

下载好后,目录结构如下图所示:

其他模型选择:https://www.modelscope.cn/models

7、修改配置文件

首先修改 evaluate/VLMCall.py,大约52行:

在api_key中,需要替换成自己的ModelScope SDK Token

            while retry_count < retry_limit: try:t1=time.time()# import pdb;pdb.set_trace()print(f"********* start call {self.model} *********")api_key=random.choice(moda_keys)client = OpenAI(api_key="xxxxxxxxxxxxxxx", # 请替换成您的ModelScope SDK Tokenbase_url="https://api-inference.modelscope.cn/v1")if self.model=="Qwen/Qwen2-VL-7B-Instruct":max_tokens=2000outputs = client.chat.completions.create(model=self.model, stream=False,messages = messages,temperature=0.9,max_tokens=max_tokens)

ModelScope SDK 地址:https://www.modelscope.cn/my/myaccesstoken

点击“新建 SDK/API 令牌”,然后复制api到代码中 

8、合成任务和轨迹

先来到data_engine 文件夹来,它用来合成任务和轨迹。以下是 data_engine 中的关键文件:

data_engine/                   # 数据引擎核心目录
├── taskgenerate/           # 任务生成数据集
│   ├── bathrooms/         # 浴室场景相关数据
│   ├── bedrooms/          # 卧室场景相关数据
│   ├── kitchens/            # 厨房场景相关数据
│   ├── living_rooms/      # 客厅场景相关数据
│   └── pick_up_and_put.json  # 物品拾取与放置任务模板

├── TaskGenerate.py         # 任务合成主脚本(生成复合任务流程)
├── o1StyleGenerate.py      # 标准轨迹生成脚本(单任务轨迹)
├── o1StyleGenerate_ordered.py  # 复杂任务轨迹生成脚本(多步骤有序任务)
├── vlmCall.py                    # 视觉语言模型调用接口(封装VLM交互逻辑)
└── vlmCallapi_keys.py      # VLM API密钥配置文件(需在此设置访问凭证)

步骤1.生成任务

TaskGenerate.py可以合成任务模板以及对应的关键动作

生成的任务相关数据会存放在<tasktype>_metadatadata_engine下的文件夹中

运行以下代码来进行任务生成:

python TaskGenerate.py

运行信息:

(embodied-reasoner) lgp@lgp-MS-7E07:~/2025_project/embodied_reasoner/data_engine$ python TaskGenerate.py
save json data to path: single_search_task_metadata/FloorPlan1.json
save json data to path: single_search_task_metadata/FloorPlan2.json
save json data to path: single_search_task_metadata/FloorPlan3.json
save json data to path: single_search_task_metadata/FloorPlan4.json
save json data to path: single_search_task_metadata/FloorPlan5.json
save json data to path: single_search_task_metadata/FloorPlan6.json
....
save json data to path: single_search_task_metadata/FloorPlan429.json
save json data to path: single_search_task_metadata/FloorPlan430.json

看一个json示例,了解包含那些内容

[[{"taskname": "Identify the Apple in the room.","tasktype": "single_search","metadatapath": "taskgenerate/kitchens/FloorPlan11/metadata.json","actions": [{"action": "navigate to","objectId": "CounterTop|+00.28|+00.95|+00.46","objectType": "CounterTop","baseaction": "","reward": 1,"relatedObject": ["CounterTop|+00.28|+00.95|+00.46","Apple|-00.05|+00.95|+00.30"]},{"action": "end","objectId": "","objectType": "","baseaction": "","reward": 1,"relatedObject": ["CounterTop|+00.28|+00.95|+00.46","Apple|-00.05|+00.95|+00.30"]}],"totalreward": 2}]
]

简单分析一下json的内容: 

1. ​​任务元信息​

字段含义
taskname任务描述:"在房间中识别苹果"(自然语言定义任务目标)
tasktype任务类型:single_search(单目标搜索任务,区别于多目标搜索)
metadatapath元数据路径:指向包含场景布局、对象属性等信息的JSON文件(如厨房场景)

2. ​​动作序列 (actions)​

  • ​动作1:导航到目标位置​

    • action"navigate to"(导航动作类型)
    • objectIdCounterTop|+00.28|+00.95|+00.46(目标对象ID,格式为 类型|x|y|z
    • objectTypeCounterTop(对象类型:厨房台面)
    • relatedObject: 关联对象列表(包含当前台面和苹果的位置,可能用于视觉定位)
    • reward1(完成此动作的即时奖励)
  • ​动作2:结束任务​

    • action"end"(终止任务信号)
    • reward1(任务完成奖励)
    • 此动作可能触发后续评估逻辑(如验证是否识别到苹果)

3. ​​奖励机制 (totalreward)​

  • 总奖励值为 2,等于两个动作的奖励之和(1+1
  • 可能用于强化学习中的策略优化(鼓励高效完成任务)

步骤2.生成O1样式轨迹

因为后需要用到gpt-4o的api,修改 data_engine/vlmCall.py代码

推荐使用国内的供应商,比较稳定:https://ai.nengyongai.cn/register?aff=RQt3

首先“添加令牌”,设置额度,点击查看就能看到Key啦

 然后填写到 OPENAI_KEY 中:

import http.client
import json
import random
import base64
from datetime import datetime
from PIL import Image
import io
import time# 删除原VLMCallapi_keys.py的依赖,直接使用固定API密钥
OPENAI_KEY = "sk-tmlMwyAq8PQqExxxxxxxxxx"  # 替换为你的真实API密钥class VLMRequestError(Exception):pass  class VLMAPI:def __init__(self, model):self.model = modeldef encode_image(self, image_path):# 保持原图片处理逻辑不变with Image.open(image_path) as img:original_width, original_height = img.sizeif original_width == 1600 and original_height == 800:new_width = original_width // 2new_height = original_height // 2resized_img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)buffered = io.BytesIO()resized_img.save(buffered, format="JPEG")base64_image = base64.b64encode(buffered.getvalue()).decode('utf-8')else:with open(image_path, "rb") as image_file:base64_image = base64.b64encode(image_file.read()).decode('utf-8')return base64_imagedef vlm_request(self, systext, usertext, image_path1=None, image_path2=None, image_path3=None, max_tokens=1500, retry_limit=3):# 构建请求体逻辑保持不变payload_data = [{"type": "text", "text": usertext}]# ...(原图片处理代码保持不变)messages = [{"role": "system", "content": systext},{"role": "user", "content": payload_data}]payload = json.dumps({"model": self.model,"stream": False,"messages": messages,"temperature": 0.9,"max_tokens": max_tokens})# 修改1:使用新的API端点conn = http.client.HTTPSConnection("ai.nengyongai.cn")retry_count = 0while retry_count < retry_limit:try:t1 = time.time()  # 提前定义时间戳# 修改2:使用固定API密钥headers = {'Accept': 'application/json','Authorization': f'Bearer {OPENAI_KEY}','User-Agent': 'Apifox/1.0.0 (https://apifox.com)','Content-Type': 'application/json'}print(f"********* start call {self.model} *********")conn.request("POST", "/v1/chat/completions", payload, headers)res = conn.getresponse()data = res.read().decode("utf-8")data_dict = json.loads(data)content = data_dict["choices"][0]["message"]["content"]print("****** content: \n", content)print(f"********* end call {self.model}: {time.time()-t1:.2f} *********")return contentexcept Exception as ex:print(f"Attempt call {self.model} {retry_count + 1} failed: {ex}")time.sleep(300)retry_count += 1return "Failed to generate completion after multiple attempts."if __name__ == "__main__":model = "gpt-4o-2024-11-20"llmapi = VLMAPI(model)# 示例调用response = llmapi.vlm_request(systext="你是一个AI助手,请用中文回答用户的问题。",usertext="今天天气怎么样?",image_path1="example.jpg")print(response)

 

再使用o1StyleGenerate.py或者o1StyleGenerate_ordered.py合成 10 种不同子任务类型的轨迹

备注:o1StyleGenerate_ordered.py 能合成更复杂的顺序对象传输任务

运行下面代码,生成简单任务轨迹数据:

python o1StyleGenerate.py

生成复杂任务轨迹数据:(可选)

python o1StyleGenerate_ordered.py

 运行信息:

(embodied-reasoner) lgp@lgp-MS-7E07:~/2025_project/embodied_reasoner/data_engine$ python o1StyleGenerate.py
metadata_path: taskgenerate/kitchens/FloorPlan1/metadata.json
task_metadata_path: single_search_task_metadata/FloorPlan1.json*********************************************************************
Scene:FloorPlan1 Task_Type: single_search Processing_Task: 0 Trajectory_idx: a
*********************************************************************task: {'taskname': 'Can you identify the Apple in the room, please?', 'tasktype': 'single_search', 'metadatapath': 'taskgenerate/kitchens/FloorPlan1/metadata.json', 'actions': [{'action': 'navigate to', 'objectId': 'CounterTop|-00.08|+01.15|00.00', 'objectType': 'CounterTop', 'baseaction': '', 'reward': 1, 'relatedObject': ['CounterTop|-00.08|+01.15|00.00', 'Apple|-00.47|+01.15|+00.48']}, {'action': 'end', 'objectId': '', 'objectType': '', 'baseaction': '', 'reward': 1, 'relatedObject': ['CounterTop|-00.08|+01.15|00.00', 'Apple|-00.47|+01.15|+00.48']}], 'totalreward': 2}
Initialization succeeded
Saved frame as data_single_search/FloorPlan1_single_search_0_a/0_init_observe.png.****** begin generate selfobservation ******
round: 0   ['Book', 'Drawer', 'GarbageCan', 'Window', 'Stool', 'CounterTop', 'Cabinet', 'ShelvingUnit', 'CoffeeMachine', 'Fridge', 'HousePlant']
********* start call gpt-4o-2024-11-20 *********
****** content: <Observation> I see a CounterTop with a CoffeeMachine placed on its surface. Adjacent to it, there is a ShelvingUnit containing books. To the side, a Fridge stands near a Cabinet. A Window is visible on the wall, and a HousePlant sits nearby, adding a touch of greenery. </Observation>
********* end call gpt-4o-2024-11-20: 2.70 *********
****** end generate selfobservation ************ begin generate r1 plan, plan object num: 2 ******
********* start call gpt-4o-2024-11-20 *********
****** content: ['Fridge']
********* end call gpt-4o-2024-11-20: 1.45 *********
****** r1_init_plan_object_list:  ['Fridge', 'CounterTop'] correct type: CounterTop
********* start call gpt-4o-2024-11-20 *********
****** content: <Planning>Based on my observation, an apple is a food item likely stored in locations where food is typically kept or prepared. The Fridge is a common place for storing perishable items, including fruits. The CounterTop, being a food preparation area, may also hold an apple if it's readily available or recently used. Thus, I will prioritize searching the Fridge first and then move to the CounterTop as the next logical location based on its function and proximity to food-related activities.</Planning>
********* end call gpt-4o-2024-11-20: 1.58 *********
****** end generate r1 plan ******* Saved frame as data_single_search/FloorPlan1_single_search_0_a/1_Fridge|-02.10|+00.00|+01.07.png.
********* start generate thinking 2 ********
************ current plan object list: ['Fridge', 'CounterTop']

 运行效果:

然后生成的轨迹的文件夹,会包括 JSON 文件和轨迹的相关图像

生存的文件目录示例:

以下是 JSON 文件内容的示例:

{"scene": "FloorPlan1","tasktype": "...","taskname": "Locate the Apple in the room.","trajectory": ["<...>...</...>","<...>...</...>","..."],"images": [".../init_observe.png","..."],"flag": "","time": "...","task_metadata": {"..."}
}
  • 场景:执行任务的场景。
  • tasktype:任务的类型。
  • taskname:任务的名称。
  • 轨迹:轨迹的推理和决策内容
  • 图像:对应图像的路径(第一张图像代表初始状态;后续每张图像对应于执行轨迹中列出的每个动作后的状态)。
  • time and flag:记录生成时间戳和轨迹生成过程中遇到的异常。
  • task_metadata:步骤1中生成的任务信息。

完整的轨迹数据,也可以去这里访问:https://huggingface.co/datasets/zwq2018/embodied_reasoner

主要特点:

  • 📸丰富的视觉数据:包含 64,000 张第一人称视角交互图像
  • 🤔深度推理能力:800 万个思维标记,涵盖分析、空间推理、反思和规划
  • 🏠多样化环境:涵盖 107 种不同的室内场景(厨房、客厅等)
  • 🎯丰富的交互对象:包含 2,100 个交互对象和 2,600 个容器对象
  • 🔄完整的交互轨迹:每个样本包含完整的观察-思考-行动序列

10、模型推理与评估

需要修改 scripts/eval.sh 代码,参考一下:

# ========================
# 模型路径配置
# ========================
# 默认模型路径配置(对应local_deploy.py的默认加载模型)
DEFAULT_MODEL_PATH="Qwen2.5-VL-3B-Instruct"  # local_deploy.py使用的默认模型路径
DEFAULT_MODEL_NAME="Qwen2.5-VL-3B-Instruct"   # evaluate.py使用的默认模型名称# 参数优先级:命令行参数 > 默认值
# 使用方式:./script.sh [自定义模型路径] [自定义模型名称]
MODEL_PATH=${1:-$DEFAULT_MODEL_PATH}  # 优先使用第一个参数,未提供则用默认路径
MODEL_NAME=${2:-$DEFAULT_MODEL_NAME}  # 优先使用第二个参数,未提供则用默认名称# ========================
# 图像处理参数配置
# ========================
export IMAGE_RESOLUTION=351232       # 输入图像的最大分辨率
export MIN_PIXELS=3136               # 最小有效像素阈值
export MAX_PIXELS=351232             # 最大有效像素阈值
MODEL_TYPE="qwen2_5_vl"              # 模型类型标识(用于框架识别)# ========================
# 环境变量配置
# ========================
export PYTHONUNBUFFERED=1            # 禁用Python输出缓冲,实时显示日志# ========================
# 启动Embedding服务(后台运行)
# ========================
# 启动文本嵌入模型服务(用于对象匹配)
# --embedding 1 表示启用嵌入模式
# 使用端口20006,后台运行(&符号)
python ./inference/local_deploy.py \--embedding 1 \--port 20006 &# ========================
# 启动多模态推理服务(前台运行)
# ========================
# 使用GPU 1运行视觉语言模型服务
CUDA_VISIBLE_DEVICES=1 python inference/local_deploy.py \--frame "hf"                   # 使用HuggingFace框架模式--model_type $MODEL_TYPE       # 指定模型类型--model_name $MODEL_PATH       # 加载指定模型--port 10002 &                 # 使用端口10002,后台运行# ========================
# 等待服务就绪
# ========================
echo "Waiting for ports ..."
# 阻塞等待直到端口20006可用(Embedding服务)
while ! nc -z localhost 20006; do   sleep 1
done# 阻塞等待直到端口10002可用(多模态服务)
while ! nc -z localhost 10002; do   sleep 1
done# ========================
# 启动AI2Thor评估流程
# ========================
# 使用GPU 0运行评估脚本
CUDA_VISIBLE_DEVICES=0 python evaluate/evaluate.py \--model_name $MODEL_NAME     # 指定推理模型--input_path "data/test_809.json"  # 输入测试数据集--batch_size 200           # 批次大小--cur_count 1              # 当前任务编号--port 10002               # 连接多模态服务的端口--total_count 1            # 总任务数量# ========================
# 显示最终结果
# ========================
wait  # 等待所有后台进程结束
python evaluate/show_result.py \--model_name $MODEL_NAME  # 展示指定模型的评估结果

打印的日志信息:

(embodied-reasoner) (base) lgp@lgp-MS-7E07:~/2025_project/embodied_reasoner$ bash scripts/eval.sh
Waiting for ports ...
INFO 05-24 17:39:18 __init__.py:190] Automatically detected platform cuda.
INFO 05-24 17:39:18 __init__.py:190] Automatically detected platform cuda.
TP: 1
gmu None <class 'NoneType'>
TP: 1
gmu None <class 'NoneType'>
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 12.06it/s]* Serving Flask app 'local_deploy'* Debug mode: off
WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead.* Running on http://127.0.0.1:10002
Press CTRL+C to quit
127.0.0.1 - - [24/May/2025 17:39:28] "GET / HTTP/1.1" 404 -
127.0.0.1 - - [24/May/2025 17:39:28] "GET /favicon.ico HTTP/1.1" 404 -* Serving Flask app 'local_deploy'* Debug mode: off
WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead.* Running on http://127.0.0.1:20006
Press CTRL+C to quit
No module named 'VLMCallapi_keys'
evaluate utils:4
evaluate utils:None
Namespace(input_path='data/test_809.json', model_name='Qwen2.5-VL-3B-Instruct', batch_size=200, port=10002, cur_count=1, total_count=1)
--total task count:809
--cache:0---remaining evaluation tasks:809
--Current process evaluation data:8090%|                                                                                                                                                                                              | 0/809 [00:00<?, ?it/s]******** Task Name: Do you find it overly troublesome to put the potato in the refrigerator and then take the apple out of the refrigerator, rinse it clean, and set it on a plate? *** Max Steps: 36 ********
******** Task Record: ./data/Qwen2.5-VL-3B-Instruct/809_long-range tasks with dependency relationships_FloorPlan2_4 ********
RoctAgent Initialization successful!!!
0 ****** begin exec action: init None ***
1 ****** end exec action: init None ***
url: http://127.0.0.1:10002/chat
predictor:utils:preprocess_image:image.width: 812
predictor:utils:preprocess_image:image.height: 448
predictor:utils:preprocess_image:image.width: 797
predictor:utils:preprocess_image:image.height: 440
input tokens shape: torch.Size([1, 761])

 下面是一个示例,展示了具身推理的过程: 

后续会继续更新的

暂时分享完成~

 相关文章推荐:

UniGoal 具身导航 | 通用零样本目标导航 CVPR 2025-CSDN博客

【机器人】复现 UniGoal 具身导航 | 通用零样本目标导航 CVPR 2025-CSDN博客

【机器人】复现 WMNav 具身导航 | 将VLM集成到世界模型中-CSDN博客

【机器人】复现 ECoT 具身思维链推理-CSDN博客

【机器人】复现 SG-Nav 具身导航 | 零样本对象导航的 在线3D场景图提示-CSDN博客

 【机器人】复现 3D-Mem 具身探索和推理 | 3D场景记忆 CVPR 2025 -CSDN博客

相关文章:

  • 华为OD机试真题—— 小明减肥(2025B卷:100分)Java/python/JavaScript/C/C++/GO最佳实现
  • Disruptor—3.核心源码实现分析二
  • MongoDB分布式架构详解:复制与分片的高可用与扩展之道
  • Android 性能优化入门(三)—— ANR 问题分析
  • ArcGISpro中的空间统计分析(二)
  • npm幻影依赖问题
  • 【最新版】Arduino IDE的安装入门Demo
  • 【Linux】进程信号(一):信号的产生与信号的保存
  • LLaMA-Factory 微调模型与训练数据量对应关系
  • 根据LangChain4j官方文档,三分钟完成Springboot项目集成LangChain4j
  • Bolt.new:重塑 Web 开发格局的 AI 利器
  • Pycharm and Flask 的学习心得(8)渲染form表单
  • 【漫话机器学习系列】277.梯度裁剪(Gradient Clipping)
  • 开发AR导航助手:ARKit+Unity+Mapbox全流程实战教程
  • 哪款云手机支持安卓12系统?掌派云手机-性价比之选
  • HUAWEI交换机配置镜像口验证(eNSP)
  • 深度解析视频剪辑SDK开发:从AI字幕提取到多端原生插件集成-优雅草卓伊凡
  • SheetMetal_Unfold方法 FreeCAD_SheetMetal deepwiki 源码笔记
  • Python模型优化技巧
  • FFMPEG-AAC编码
  • 为什么用dw做的网站打不开/2021十大网络舆情案例
  • 保定免费建站/哪些平台可以发布软文
  • 团购的网站扣佣金分录怎么做/磁力吧ciliba
  • 郑州公司企业网站建设/百度推广查询
  • wordpress多站点的路径/关键词首页排名优化平台
  • 哪些网站可以做锚文本/如何设计一个网页