【C/C++】红黑树学习笔记
文章目录
- 红黑树
- 1 基本概念
- 1.1 定义
- 1.2 基本特性推理
- 1.3 对比
- 1.4 延伸
- 1.4.1 简单判别是否是红黑树
- 1.4.2 应用
- 2 插入
- 2.1 插入结点默认红色
- 2.2 插入结点
- 2.2.1 插入结点是根结点
- 2.2.2 插入结点的叔叔是红色
- 2.2.3 插入结点的叔叔是黑色
- 场景分析
- LL型
- RR型
- LR型
- RL型
- 3 构建
- 4 示例代码
红黑树
1 基本概念
1.1 定义
红黑树首先是二叉搜索树(左<根<右);
基本性质:
- 结点非红即黑;
- 根/叶子都是黑;
- 任意节点向下的所有路径上存在黑结点数量一致;
- 红结点下不能直连红结点;
1.2 基本特性推理
- 最长路径不超过最短路径的两倍;
1.3 对比
与AVL树对比:
AVL | RB | |
---|---|---|
高度 | 任一结点左右子树的高度差绝对值不超过1 | 任一结点左右子树的高度差不超过两倍 |
查询效率(相对) | 稍高 O(lg n) | 稍低 O(lg n) |
插入/删除效率(相对) | 低 | 高 |
1.4 延伸
1.4.1 简单判别是否是红黑树
- 答案:否
- 如果添加NIL结点,发现某一结点下路径的黑结点数量并不相同
1.4.2 应用
- c++ stl中的map/set 是基于红黑树实现的
2 插入
2.1 插入结点默认红色
- 如果默认黑色,首先就会破坏黑高同原则,调整相对比较麻烦;
- 默认红色,可能破坏不红红原则或根为黑原则,调整相对容易;
2.2 插入结点
如果红黑树性质被破坏,分三种情况调整:
2.2.1 插入结点是根结点
- 违反根为黑原则
- 调整方案:直接变黑
2.2.2 插入结点的叔叔是红色
示例1:插入结点1
调整方案:
- father 和 uncle 变红,grandpather 变黑
- grandfather变为插入结点,继续判断是否违反原则
2.2.3 插入结点的叔叔是黑色
示例:插入结点1
该情况下,uncle可能直观上不存在,但是红黑树默认有NIL结点,是黑的
调整方案:
- 根据不同场景(LL/LR/RR/RL)进行旋转,然后变色
场景分析
LL型
step 1:基于grandfather右旋
step 2:变色
RR型
step 1:基于grandfather进行左旋
step 2:变色
LR型
调整方案:
RL型
调整方案:
3 构建
按照二叉搜索树规则,依次插入结点,并根据插入规则进行调整
4 示例代码
根据算法导论伪代码实现:
#pragma once#include <iostream>
#include <functional>enum Color {RED, BLACK};struct RBNode {int key;Color color;RBNode *left;RBNode *right;RBNode *parent;
};class RBTree {
private:RBNode *root;RBNode *NIL;void LeftRotate(RBNode *x) {RBNode *y = x->right;x->right = y->left;if (x->right != NIL) {x->right->parent = x;}y->parent = x->parent;if (x->parent == NIL) {root = y;} else if (x == x->parent->left) {x->parent->left = y;} else {x->parent->right = y;}x->parent = y;y->left = x;}void RightRotate(RBNode *y) {RBNode *x = y->left;y->left = x->right;if (y->left != NIL) {y->left->parent = y;}x->parent = y->parent;if (y->parent == NIL) {root = x;} else if (y->parent->left = y) {y->parent->left = x;} else {y->parent->right = x;}y->parent = x;x->right = y;}void InsertFixup(RBNode *z) {while (z->parent->color == RED) {if (z->parent == z->parent->parent->left) {RBNode *y = z->parent->parent->right;if (y->color == RED) {z->parent->color = BLACK;y->color = BLACK;z->parent->parent->color = RED;z = z->parent->parent;} else {if (z == z->parent->right) {z = z->parent;LeftRotate(z);}z->parent->color = BLACK;z->parent->parent->color = RED;RightRotate(z->parent->parent);}} else {RBNode *y = z->parent->parent->left;if (y->color == RED) {z->parent->color = BLACK;y->color = BLACK;z->parent->parent->color = RED;z = z->parent->parent;} else {if (z == z->parent->left) {z = z->parent;RightRotate(z);}z->parent->color = BLACK;z->parent->parent->color = RED;LeftRotate(z->parent->parent);}}}root->color = BLACK;}void Transplant(RBNode *u, RBNode *v) {if (u->parent == NIL) {root = v;} else if (u == u->parent->left) {u->parent->left = v;} else {u->parent->right = v;}v->parent = u->parent; // if v is nullptr or NIL}void DeleteFixup(RBNode *x) {while (x != root && x->color == BLACK) {if (x == x->parent->left) {RBNode *w = x->parent->right;if (w->color == RED) {w->color = BLACK;x->parent->color = RED;LeftRotate(x->parent);w = x->parent->right;}if (w->left->color == BLACK && w->right->color == BLACK) {w->color = RED;x = x->parent;} else {if (w->right->color == BLACK) {w->left->color = BLACK;w->color = RED;RightRotate(w);w = x->parent->right;}w->color = x->parent->color;x->parent->color = BLACK;w->right->color = BLACK;LeftRotate(x->parent);x = root;}} else {RBNode *w = x->parent->left;if (w->color == RED) {w->color = BLACK;x->parent->color = RED;RightRotate(x->parent);w = x->parent->left;}if (w->right->color == BLACK && w->left->color == BLACK) {w->color = RED;x = x->parent;} else {if (w->left->color == BLACK) {w->right->color = BLACK;w->color = RED;LeftRotate(w);w = x->parent->left;}w->color = x->parent->color;x->parent->color = BLACK;w->left->color = BLACK;RightRotate(x->parent);x = root;}}}x->color = BLACK;}RBNode* Minimum(RBNode *node) {while (node->left != NIL) {node = node->left;}return node;}public:RBTree() {NIL = new RBNode{0, BLACK, nullptr, nullptr, nullptr};root = NIL;}~RBTree() {std::function<void(RBNode *)> deleteNode = [&](RBNode *node) {if (node != NIL) {deleteNode(node->left);deleteNode(node->right);delete node;}};deleteNode(root);delete NIL;}void Insert(int key) {RBNode *z = new RBNode{key, RED, NIL, NIL};RBNode *y = NIL;RBNode *x = root;while (x != NIL) {y = x;if (z->key < x->key) {x = x->left;} else {x = x->right;}}z->parent = y;if (y == NIL) {root = z;} else if (z->key < y->key) {y->left = z;} else {y->right = z;}InsertFixup(z);}void Remove(int key) {RBNode *z = root;while (z != NIL && z->key != key) {if (key < z->key) {z = z->left;} else {z = z->right;}}if (z == NIL) {return;}RBNode *y = z;RBNode *x;Color yOriColor = y->color;if (z->left == NIL) {x = z->right;Transplant(z, z->right);} else if (z->right == NIL) {x = z->left;Transplant(z, z->left);} else {y = Minimum(z->right);yOriColor = y->color;x = y->right;if (y->parent == z) {x->parent = y;} else {Transplant(y, y->right);y->right = z->right;y->right->parent = y;}Transplant(z, y);y->left = z->left;y->left->parent = y;y->color = z->color;}delete z;if (yOriColor == BLACK) {DeleteFixup(x);}}void Inorder() {InorderHelper(root);std::cout << std::endl;}void InorderHelper(RBNode* node) {if (node != NIL) {InorderHelper(node->left);std::cout << node->key << " (" << (node->color == RED ? "R)" : "B)") << " ";InorderHelper(node->right);}}
};