当前位置: 首页 > news >正文

Basic concepts for seismic source - Finite fault model

下面主要介绍与finite fault model有关的一些参数,有限断层模型更深入的一些认识,可以参考该文:有限断层模型(Finite-fault model)-CSDN博客


In finite fault modeling, the rupture is treated as a 2D surface (as opposed to a point source in simpler models), allowing for a more realistic simulation of earthquake source processes. Several key concepts and parameters are involved in defining and analyzing a finite fault model:

🔹 1. Fault Geometry

Defines the shape and orientation of the rupture plane:

  • Length (L) and Width (W): Physical dimensions of the rupture area.

  • Strike: Angle between north and the fault trace (measured clockwise).

  • Dip: Angle between the fault plane and the horizontal.

  • Rake: Direction of slip on the fault plane.

  • Depth to Top of Rupture: Often set near the seismogenic zone surface (e.g., 1–5 km).

  • Segmented Faults: Faults can be modeled with multiple segments or bending geometries.


🔹 2. Slip Distribution

Describes how much slip occurred on different parts of the fault:

  • Heterogeneous Slip: Non-uniform, varies spatially across the fault plane.

  • Often derived from inversion of seismic, GPS, or InSAR data.

  • Sometimes uses stochastic models or empirical Green’s functions.


🔹 3. Rupture Kinematics

Describes how the rupture propagates:

  • Rupture Velocity (Vr): Speed at which rupture front travels (~70–90% of shear wave speed).

  • Rise Time: Duration of slip at each point on the fault.

  • Nucleation Point: Starting location of rupture.

  • Slip Time Function: Time history of slip (e.g., isosceles triangle, Kostrov-type).


🔹 4. Stress and Friction Parameters (in dynamic models)

  • Initial Shear/Normal Stress: Pre-stress on fault.

  • Friction Law: Describes how friction evolves (e.g., slip-weakening, rate-and-state).

  • Critical Slip Distance (Dc): Slip required for frictional weakening.


🔹 5. Seismic Source Parameters

These link the fault model to observed ground motions:

  • Moment Magnitude (Mw): Related to total slip and rupture area via:

    M_0 = \mu A \overline{D}, \quad M_w = \frac{2}{3} \log_{10}(M_0) - 6.06

    where:

    • M_0 = seismic moment

    • \mu = shear modulus (usually ~30 GPa)

    • A = fault area

    • \overline{D} = average slip

  • Corner Frequency (fc): Used in source spectra and stress drop calculation.

  • Stress Drop (Δσ): Approximate strength of the rupture, related to slip and fault dimensions.


🔹 6. Ground Motion Simulation Inputs

If the model is used to generate synthetic ground motions:

  • Green’s Functions or Wave Propagation Models: For convolving the fault slip.

  • Site Effects: Local amplification due to Vs30, Q, topography, etc.

  • Kinematic vs. Dynamic Modeling: Kinematic uses prescribed slip; dynamic solves for slip based on stress.


🔹 Common Tools for Finite Fault Modeling

  • Slip Inversion Codes (e.g., Finite Fault Inversion by Ji, Gasperini’s code)

  • Dynamic Rupture Simulators (e.g., SPECFEM3D, SeisSol, FAULTS, AWP-ODC)

  • Stochastic Finite Fault Generators (e.g., Graves & Pitarka 2010)


🔹 Visualization and Output

  • Slip Maps

  • Rupture Time Contours

  • Moment Rate Functions

  • Synthetic Seismograms

相关文章:

  • 佰力博科技与您探讨半导体电阻测试常用的一些方法
  • React 与 TypeScript 极客园移动端
  • 旋转编码器计次 红外对射传感器计次小实验及其相关库函数详解 (江协科技)
  • 《洞察因果本质:解锁智能体大模型精准预测的底层逻辑》
  • torch.gather()和torch.sort
  • Human DiO-LDL,绿色荧光标记人源低密度脂蛋白,研究细胞内吞
  • vscode include总是报错
  • 印度语言指令驱动的无人机导航!UAV-VLN:端到端视觉语言导航助力无人机自主飞行
  • nltk-英文句子分词+词干化
  • 如何顺利地将应用程序从 Android 转移到Android
  • 微服务架构中的 RabbitMQ:异步通信与服务解耦(一)
  • 第六部分:阶段项目 5:构建 NestJS RESTful API 服务器
  • 5G 网络全场景注册方式深度解析:从信令交互到报文分析
  • Day124 | 灵神 | 二叉树 | 二叉树最小深度
  • 什么是VR展馆?VR展馆的实用价值有哪些?
  • 110kV/630mm2电缆5km的交流耐压试验兼顾110kVGIS开关用
  • jquery.table2excel方法导出
  • Cause: org.apache.ibatis.ognl.OgnlException: sqlSegment
  • 新手到资深的Java开发编码规范
  • 游戏如何应对反编译工具dnspy
  • 广告设计图片简单/天津搜索引擎seo
  • 做情趣用品网站需要哪些资质/企业专业搜索引擎优化
  • 如何制作手机版网站/上海seo招聘
  • wordpress+资源站模板/百度助手app下载
  • 网站换域名能换不/软文范例大全800字
  • 高端网站开发哪家专业/天津关键词优化平台