当前位置: 首页 > news >正文

LSTM语言模型验证代码

#任务:基于已有文本数据,建立LSTM模型,预测序列文字
1 完成数据预处理,将文字序列数据转化为可用于LSTM输入的数据。
2 查看文字数据预处理后的数据结构,并进行数据分离操作
3 针对字符串输入(“In the heart of the ancient, dense forest, where sunlight filtered through the thick canopy in a patchwork of gold and shadow, a creature of unparalleled grace and mystery roamed. This was no ordinary animal; it was a panther, a living embodiment of the wild's s untamed beauty and raw power. Its presence sent shivers down the spines of every creature that shared its domain, a silent yet potent reminder of nature's hierarchy.”)预测其后续对应的字符
备注:模型结构:单层LSTM,输出20个神经元;每次使用前20个字符预测第21个字符。

#l载入数据
data = open('test.txt').read()
#移除换行符
data = data.replace('\n','').replace('\r','')
print(data)

#字符去重
letters = list(set(data))
print(letters)
num_letters = len(letters)
print(num_letters)

#建立字典,字母到数字的映射关系
int_to_char={a:b for a,b in enumerate(letters)}
print(int_to_char)
char_to_int={b:a for a,b in enumerate(letters)}
print(char_to_int)

----------生成训练数据---------

time_step = 20
import numpy as np
from keras.utils import to_categorical

# 滑动窗口提取数据
def extract_data(data, slide):
    x = []
    y = []
    for i in range(len(data) - slide):
        x.append([a for a in data[i:i+slide]])
        y.append(data[i+slide])  # 修正变量名,将side改为slide
    return x, y

# 字符到数字的批量转化
def char_to_int_Data(x, y, char_to_int):
    x_to_int = []
    y_to_int = []
    for i in range(len(x)):
        x_to_int.append([char_to_int[char] for char in x[i]])
        y_to_int.append([char_to_int[char] for char in y[i]])
    return x_to_int, y_to_int

# 实现输入字符文章的批量处理,输入整个字符,滑动窗大小,转化字典
def data_preprocessing(data, slide, num_letters, char_to_int):
    char_Data = extract_data(data, slide)
    int_Data = char_to_int_Data(char_Data[0], char_Data[1], char_to_int)
    Input = int_Data[0]
    Output = list(np.array(int_Data[1]).flatten())
    Input_RESHAPED = np.array(Input).reshape(len(Input), slide)
    
    # 创建全零数组,然后用独热编码填充
    one_hot_input = np.zeros((Input_RESHAPED.shape[0], Input_RESHAPED.shape[1], num_letters))
    
    # 修正嵌套循环的索引
    for i in range(Input_RESHAPED.shape[0]):  # 遍历样本
        for j in range(Input_RESHAPED.shape[1]):  # 遍历时间步
            one_hot_input[i, j, :] = to_categorical(Input_RESHAPED[i, j], num_classes=num_letters)
    
    return one_hot_input, Output

#提取X和y的数据
X, y = data_preprocessing(data, time_step, num_letters, char_to_int)

#分离数据
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.1,random_state=10)
print(X_train.shape, len(y_train))

y_train_category = to_categorical(y_train, num_letters)
print(y_train_category)

#setup the model
from keras.models import Sequential
from keras.layers import Dense, LSTM
model =Sequential()
model.add(LSTM(units=20, input_shape=(X_train.shape[1], X_train.shape[2]), activation='relu'))
model.add(Dense(units=num_letters, activation='softmax'))
model.compile(optimizer='adam', loss = 'categorical_crossentropy', metrics=['accuracy'])
model.summary()

#train the model
model.fit(X_train,y_train_category,batch_size=1000,epochs=50)

#make prediction based on the training data
# 假设这是一个分类模型(如多类或二分类)
# 使用 model.predict() 替代 predict_classes()
y_train_predict_probs = model.predict(X_train)

# 对于多分类问题(softmax输出),获取预测类别索引
if y_train_predict_probs.shape[1] > 1:
    y_train_predict = np.argmax(y_train_predict_probs, axis=1)
# 对于二分类问题(sigmoid输出),使用阈值0.5
else:
    y_train_predict = (y_train_predict_probs > 0.5).astype(int)

print(y_train_predict)

#transform the int to letters
y_train_predict_char = [int_to_char[i] for i in y_train_predict]
print(y_train_predict_char)

from sklearn.metrics import accuracy_score
accuracy_train = accuracy_score(y_train, y_train_predict)
print(accuracy_train)

#make prediction based on the training data
# 假设这是一个分类模型(如多类或二分类)
# 使用 model.predict() 替代 predict_classes()
y_test_predict_probs = model.predict(X_test)

# 对于多分类问题(softmax输出),获取预测类别索引
if y_test_predict_probs.shape[1] > 1:
    y_test_predict = np.argmax(y_test_predict_probs, axis=1)
# 对于二分类问题(sigmoid输出),使用阈值0.5
else:
    y_test_predict = (y_test_predict_probs > 0.5).astype(int)


#transform the int to letters
y_test_predict_char = [int_to_char[i] for i in y_test_predict]
print(y_test_predict_char)

from sklearn.metrics import accuracy_score
accuracy_test = accuracy_score(y_test, y_test_predict)
print(accuracy_test)
print(y_test_predict)
print(y_test)

new_letters = 'In the heart of the ancient, dense forest, where sunlight filtered through the thick canopy in a patchwork of gold and shadow, a creature of unparalleled grace and mystery roamed. '
#new_letters = 'fifin is a student in sf industry. He studiess her her fo sssssssss'
X_new,y_new = data_preprocessing(new_letters, time_step, num_letters, char_to_int)
#make prediction based on the training data
# 假设这是一个分类模型(如多类或二分类)
# 使用 model.predict() 替代 predict_classes()
y_new_predict_probs = model.predict(X_new)

# 对于多分类问题(softmax输出),获取预测类别索引
if y_new_predict_probs.shape[1] > 1:
    y_new_predict = np.argmax(y_new_predict_probs, axis=1)
# 对于二分类问题(sigmoid输出),使用阈值0.5
else:
    y_new_predict = (y_new_predict_probs > 0.5).astype(int)

print(y_new_predict)

#transform the int to letters
y_new_predict_char = [int_to_char[i] for i in y_new_predict]
print(y_new_predict_char)

for i in range(0, X_new.shape[0]-20):
    print(new_letters[i:i+20], '--predict next letter is ---', y_new_predict_char[i])

相关文章:

  • 零售智能执行大模型架构设计:从空间建模到上下文推理,再到智能Agent
  • 小程序涉及提供提供文本深度合成技术,请补充选择:深度合成-AI问答类目
  • 【Redisson】快速实现分布式锁
  • 打卡第二十三天
  • 车道线检测:自动驾驶的“眼睛”
  • 通义灵码助力Neo4J开发:快速上手与智能编码技巧
  • css使用clip-path属性切割显示可见内容
  • 【深度学习】Transformer 的应用
  • Python的collections模块:数据结构的百宝箱
  • OSA实战笔记二
  • ESP8266-12S开发板控制IO控制输出-走马灯---学习系列,含代码
  • 联合索引失效情况分析
  • Windows 安装Anaconda
  • 小米便签源码部署流程
  • python 提交 命令到远程windows服务器并获取作业进程id
  • RabbitMQ Topic RPC
  • MS16-075 漏洞 复现过程
  • 小区服务|基于Java+vue的小区服务管理系统(源码+数据库+文档)
  • Java NIO(New I/O)
  • 【实验增效】5 μL/Test 高浓度液体试剂!Elabscience PE Anti-Mouse Ly6G抗体 简化流式细胞术流程
  • 6月底将返回中国,旅日大熊猫获颁“感谢状”
  • 三部门印发《2025年深入推进IPv6规模部署和应用工作要点》
  • 这个死亡率第一的“老年病”,正悄悄逼近年轻人
  • 释新闻|拜登确诊恶性前列腺癌,预后情况如何?
  • “走进书适圈”:一周城市生活
  • 2025年“新时代网络文明公益广告”征集展示活动在沪启动