当前位置: 首页 > news >正文

Spark-Core(RDD行动算子)

一、RDD行动算子

行动算子就是会触发action的算子,触发action的含义就是真正的计算数据。

1、reduce

  • 函数签名:
def reduce(f: (T, T) => T): T
  • 函数说明:聚集 RDD 中的所有元素,先聚合分区内数据,再聚合分区间数据。

举栗:

val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
val reduceResult: Int = rdd.reduce(_+_)
println(reduceResult)

2、 collect

  • 函数签名:
def collect(): Array[T]
  • 函数说明:在驱动程序中,以数组 Array 的形式返回数据集的所有元素

举栗:

val sparkConf = new SparkConf().setMaster("local[*]").setAppName("Operator")val sc = new SparkContext(sparkConf)val rdd = sc.makeRDD(List(1,2,3,4),2)val ints = rdd.collect()println(ints.mkString(","))sc.stop()

3、 foreach

  • 函数签名:
def foreach(f: T => Unit): Unit = withScope {val cleanF = sc.clean(f)sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
}
  • 函数说明:分布式遍历 RDD 中的每一个元素,调用指定函数

举栗:

val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
rdd.collect().foreach(println)

4、count

  • 函数签名:
def count(): Long
  • 函数说明:返回 RDD 中元素的个数

举栗:

val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
val countResult: Long = rdd.count()
println(countResult)

5、first

  • 函数签名:
def first(): T
  • 函数说明:返回 RDD 中的第一个元素

举栗:

val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
val firstResult: Int = rdd.first()
println(firstResult)

6、take

  • 函数签名:
def take(num: Int): Array[T]
  • 函数说明:返回一个由 RDD 的前 n 个元素组成的数组

举栗:

val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
val takeResult: Array[Int] = rdd.take(2)
takeResult.foreach(println)

7、takeOrdered

  • 函数签名:
def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T]
  • 函数说明:返回该 RDD 排序后的前 n 个元素组成的数组

举栗:

val rdd: RDD[Int] = sc.makeRDD(List(1,3,2,4))
val result: Array[Int] = rdd.takeOrdered(2)
result.foreach(println)

8、aggregate

  • 函数签名:
def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U
  • 函数说明:分区的数据通过初始值和分区内的数据进行聚合,然后再和初始值进行分区间的数据聚合

举栗:

val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4),8)
// 将该 RDD 所有元素相加得到结果
val result1: Int = rdd.aggregate(0)(_+_, _+_)
val result2: Int = rdd.aggregate(10)(_+_,_+_)println(result1)
println("**********")

9、fold

  • 函数签名:
def fold(zeroValue: T)(op: (T, T) => T): T
  • 函数说明:折叠操作,aggregate 的简化版操作

举栗:

val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4))
val foldResult: Int = rdd.fold(0)(_+_)
println(foldResult)

10、countByKey

  • 函数签名:
def countByKey(): Map[K, Long]
  • 函数说明:统计每种 key 的个数

举栗:

val rdd: RDD[(Int, String)] = sc.makeRDD(List((1, "a"), (1, "a"), (1, "a"), (2,"b"), (3, "c"), (3, "c")))
val result: collection.Map[Int, Long] = rdd.countByKey()
print(result)

11、 save 相关算子

  • 函数签名:
def saveAsTextFile(path: String): Unit
def saveAsObjectFile(path: String): Unit
def saveAsSequenceFile(path: String,codec: Option[Class[_ <: CompressionCodec]] = None): Unit //了解即可
  • 函数说明:将数据保存到不同格式的文件中

举栗:

val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4))
// 保存成 Text 文件
rdd.saveAsTextFile("Spark-core/output/output")
// 序列化成对象保存到文件
rdd.saveAsObjectFile("Spark-core/output/output1")

相关文章:

  • 【PhysUnits】2.2 Scalar<T> 标量元组结构体(scalar/mod.rs)
  • idea左侧项目资源管理器不见了处理
  • bpftrace 中使用 bpf_trace_printk
  • 【MCP】客户端配置(ollama安装、qwen2.5:0.5b模型安装、cherry-studio安装配置)
  • KL散度(Kullback-Leibler Divergence):概率分布差异的量化利器
  • MCP认证全解析:从零到微软认证专家
  • 复刻低成本机械臂 SO-ARM100 上位机控制调试
  • 强化学习之基于无模型的算法之演员-评论家算法
  • 基于供热企业业务梳理的智能化赋能方案
  • 2024ccpc【上海+陕西】
  • mongodb 学习笔记
  • SQL 中的中括号 [ ]、双引号 “ “、反引号 ` `:SQL Server、Oracle、MySQL三大数据库标识符 定界符 详解
  • c语法高阶—(联合体,枚举,位域,编译器,宏定义,条件编译,条件编译,头文件)
  • zst-2001 历年真题 知识产权
  • Unable to ping server at localhost:1099解决
  • 第十二节:图像处理基础-图像平滑处理 (均值滤波、高斯滤波、中值滤波)
  • HTTP请求与缓存、页面渲染全流程
  • React学习路线图-Gemini版
  • Linux基本操作——网络操作文件下载
  • Selenium的driver.get_url 和 手动输入网址, 并点击的操作,有什么不同?
  • “一节课、两小时”,体育正在回归“C位”
  • 图集︱“中国排面”威武亮相
  • 中铁房地产24.7亿元竞得上海松江新城宅地,溢价率20.42%
  • 马上评丨规范隐藏式车门把手,重申安全高于酷炫
  • 中日有关部门就日本水产品输华问进行第三次谈判,外交部回应
  • 新华每日电讯:给“男性妇科病论文”开一剂复方药