当前位置: 首页 > news >正文

例数据中关键指标对应的SQL查询模板

以下是针对示例数据中关键指标对应的SQL查询模板,包含MySQL和PostgreSQL两种版本:

1. 订单处理系统指标查询

1.1 订单处理成功率
-- MySQL
SELECT DATE_FORMAT(created_at, '%Y-%m-%d %H:%i:00') AS time_window,COUNT(*) AS total_orders,SUM(CASE WHEN status = 'success' THEN 1 ELSE 0 END) AS success_orders,(SUM(CASE WHEN status = 'success' THEN 1 ELSE 0 END) / COUNT(*)) * 100 AS success_rate
FROM orders
WHERE created_at BETWEEN [start_time] AND [end_time]
GROUP BY FLOOR(UNIX_TIMESTAMP(created_at)/300)  -- 5分钟窗口
ORDER BY time_window;-- PostgreSQL
SELECT date_trunc('minute', created_at) - INTERVAL '5 min' * (EXTRACT(MINUTE FROM created_at)::int / 5) AS time_window,COUNT(*) AS total_orders,SUM(CASE WHEN status = 'success' THEN 1 ELSE 0 END) AS success_orders,(SUM(CASE WHEN status = 'success' THEN 1 ELSE 0 END)::float / COUNT(*)) * 100 AS success_rate
FROM orders
WHERE created_at BETWEEN [start_time] AND [end_time]
GROUP BY time_window
ORDER BY time_window;
1.2 支付延迟分析
-- 通用版
SELECT payment_gateway,AVG(completed_at - created_at) AS avg_delay,PERCENTILE_CONT(0.95) WITHIN GROUP (ORDER BY completed_at - created_at) AS p95_delay
FROM payments
WHERE status = 'completed'AND created_at >= CURRENT_DATE - INTERVAL '1 day'
GROUP BY payment_gateway;

2. 用户认证模块指标查询

2.1 认证成功率
-- 通用版
WITH auth_stats AS (SELECTdate_trunc('hour', request_time) AS hour_window,COUNT(*) FILTER (WHERE status_code = 200) AS success_count,COUNT(*) AS total_requestsFROM auth_logsWHERE request_time BETWEEN [start_time] AND [end_time]GROUP BY hour_window
)
SELECThour_window,success_count,total_requests,(success_count::float / total_requests) * 100 AS success_rate
FROM auth_stats;
2.2 JWT验证延迟分析
-- PostgreSQL (JSONB支持)
SELECTendpoint,AVG(processing_time) AS avg_latency,MAX(processing_time) AS max_latency
FROM (SELECTrequest_path AS endpoint,(response_headers->>'x-processing-ms')::numeric AS processing_timeFROM api_logsWHERE request_path LIKE '/auth/verify%'AND logged_at >= NOW() - INTERVAL '1 week'
) AS jwt_logs
GROUP BY endpoint;

3. 实时数据分析引擎指标查询

3.1 事件处理延迟
-- 时序数据库示例 (TimescaleDB)
SELECTtime_bucket('30 seconds', event_time) AS bucket,system_id,AVG(processed_at - event_time) AS avg_latency,MAX(processed_at - event_time) AS max_latency
FROM events
WHERE event_time >= NOW() - INTERVAL '15 minutes'
GROUP BY bucket, system_id
ORDER BY bucket DESC;
3.2 资源利用率分析
-- 监控数据查询 (InfluxDB示例)
SELECTMEAN("cpu_usage") AS avg_cpu,MAX("memory_usage") AS peak_mem
FROM "host_metrics"
WHERE time > now() - 1h
GROUP BY time(1m), "host"

通用性能分析查询模板

-- 错误率趋势分析
SELECTdate_trunc('hour', error_time) AS time_window,error_code,COUNT(*) AS error_count,(COUNT(*) * 100.0) / (SELECT COUNT(*) FROM logs WHERE log_time BETWEEN [start] AND [end]) AS error_percent
FROM error_logs
WHERE error_time BETWEEN [start] AND [end]
GROUP BY time_window, error_code
ORDER BY error_count DESC;-- 瓶颈组件分析
SELECTcomponent,COUNT(*) AS failure_count,AVG(duration) AS avg_response_time,CORR(system_load, duration) AS load_correlation
FROM performance_logs
WHERE timestamp BETWEEN [start] AND [end]
GROUP BY component
HAVING COUNT(*) > 10
ORDER BY failure_count DESC
LIMIT 5;

使用建议:

  1. 时间参数替换:

    • 将[start_time]/[end_time]替换为实际时间范围
    • 使用数据库特定时间函数(如NOW() - INTERVAL ‘1 day’)
  2. 性能优化:

-- 创建覆盖索引示例
CREATE INDEX idx_orders_status_time ON orders(status, created_at);
CREATE INDEX idx_authlogs_time_status ON auth_logs(request_time, status_code);
  1. 查询安全:
-- 使用参数化查询防止SQL注入
PREPARE get_metrics (timestamptz, timestamptz) AS
SELECT ... WHERE timestamp BETWEEN $1 AND $2;

这些SQL模板可根据具体业务需求进行以下扩展:

  1. 增加异常处理:TRY_CAST/CASE WHEN处理数据异常
  2. 添加层次聚合:WITH ROLLUP进行多维度聚合
  3. 结合窗口函数:计算移动平均值等趋势指标
  4. 集成机器学习:使用MADlib进行异常检测

实际使用时应根据数据库类型(OLTP/OLAP)选择合适的执行策略,建议:

  • 业务数据库:使用预计算物化视图
  • 分析数据库:使用列式存储+分区
  • 实时分析:结合流处理引擎(如Flink SQL)

相关文章:

  • 深度探索DeepSeek:从架构设计到性能优化的实战指南
  • 优雅关闭服务:深入理解 SIGINT / SIGTERM 信号处理机制
  • 装饰器模式深度解析:让对象功能扩展像乐高一样灵活 [特殊字符]
  • 0基础 | Proteus电路仿真 | 电机使用
  • 海量数据存储与分析:HBase vs ClickHouse vs Doris 三大数据库优劣对比指南
  • 《社交类应用开发:React Native与Flutter的抉择》
  • 【C语言】文本操作函数fseek、ftell、rewind
  • 装饰器设计模式(Decorator Pattern)详解
  • (A题|支路车流量推测问题)2025年第二十二届五一数学建模竞赛(五一杯/五一赛)解题思路|完整代码论文集合
  • Ubuntu18 登录界面死循环 Ubuntu进不了桌面
  • UN R79 关于车辆转向装置形式认证的统一规定(正文部分1)
  • 编程语言全景解析与编程技巧深度探索
  • 【算法扩展】斐波那契查找算法 - JAVA
  • Python结合QT进行开发
  • ES6函数、对象和面向对象扩展
  • QT6 源(66)篇三:阅读与注释类 QAbstractSpinBox ,这是螺旋框的基类,附上源码
  • QML Image 组件详解
  • Stm32 烧录 Micropython
  • 深度学习框架搭建(Vscode/Anaconda/CUDA/Pytroch)
  • 小牛电动:荣登央视舞台,引领智能出行新潮流
  • 剑指3000亿产业规模,机器人“武林大会”背后的无锡“野望”
  • 万达电影去年净利润亏损约9.4亿元,计划未来三年内新增25块IMAX银幕
  • 中国海警位中国黄岩岛领海及周边区域执法巡查
  • 上海科创的三种品格
  • 美国通过《删除法案》:打击未经同意发布他人私密图像,包括“深度伪造”
  • 习近平对辽宁辽阳市白塔区一饭店火灾事故作出重要指示