当前位置: 首页 > news >正文

Python爬虫(10)Python数据存储实战:基于pymongo的MongoDB开发深度指南

目录

      • 一、为什么需要文档型数据库?
        • 1.1 数据存储的范式变革
        • 1.2 pymongo的核心优势
      • 二、pymongo核心操作全解析
        • 2.1 环境准备
        • 2.2 数据库连接与CRUD操作
        • 2.3 聚合管道实战
        • 2.4 分批次插入百万级数据(进阶)
        • 2.5 分批次插入百万级数据(进阶)
      • 三、生产环境进阶配置
        • 3.1 性能优化关键措施
        • 3.2 高可用架构配置
        • 3.3 安全加固方案
      • 四、总结与最佳实践
        • 4.1 技术选型对比‌:
        • 4.2 性能优化原则‌:
        • 4‌.3 避坑指南‌:
        • Python爬虫相关文章(推荐)

一、为什么需要文档型数据库?

1.1 数据存储的范式变革

在移动互联网与物联网时代,‌非结构化数据占比超过80%‌(IDC报告)。传统关系型数据库(如MySQL)的固定表结构难以应对以下场景:

  • ‌动态字段需求‌:用户画像标签频繁增减
  • ‌海量数据写入‌:物联网设备每秒万级数据写入
  • ‌复杂嵌套结构‌:一篇电商商品信息包含多级评论、规格参数

‌MongoDB作为文档型数据库的代表‌,采用BSON(Binary JSON)格式存储数据,支持动态模式、水平扩展和地理空间查询,成为大数据场景的核心基础设施。

1.2 pymongo的核心优势

作为MongoDB官方Python驱动,pymongo提供:

  • ‌原生BSON支持‌:无缝处理Python字典与BSON的转换
  • ‌连接池管理‌:自动管理TCP连接复用
  • ‌聚合管道封装‌:支持复杂数据分析操作
  • ‌完善的API‌:覆盖索引管理、副本集操作等高级功能

二、pymongo核心操作全解析

2.1 环境准备
# 安装MongoDB社区版(以Ubuntu为例)
wget -qO - https://www.mongodb.org/static/pgp/server-6.0.asc | sudo apt-key add -
echo "deb [ arch=amd64,arm64 ] https://repo.mongodb.org/apt/ubuntu focal/mongodb-org/6.0 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-6.0.list
sudo apt-get update
sudo apt-get install -y mongodb-org# 安装pymongo
pip install pymongo
2.2 数据库连接与CRUD操作
from pymongo import MongoClient
from pymongo.errors import ConnectionFailure# 建立连接(默认连接池大小100)
client = MongoClient(host="localhost",port=27017,username="admin",  # 启用身份验证时必填password="securepassword",authSource="admin"
)try:# 心跳检测client.admin.command('ping')print("Successfully connected to MongoDB!")
except ConnectionFailure:print("Server not available")# 选择数据库与集合(自动懒创建)
db = client["ecommerce"]
products_col = db["products"]# 插入文档(自动生成_id)
product_data = {"name": "Wireless Mouse","price": 49.99,"tags": ["electronics", "computer"],"stock": {"warehouse_A": 100, "warehouse_B": 50},"last_modified": datetime.now()
}
insert_result = products_col.insert_one(product_data)
print(f"Inserted ID: {insert_result.inserted_id}")# 查询文档(支持嵌套查询)
query = {"price": {"$lt": 60}, "tags": "electronics"}
projection = {"name": 1, "price": 1}  # 类似SQL SELECT
cursor = products_col.find(query, projection).limit(5)
for doc in cursor:print(doc)# 更新文档(原子操作)
update_filter = {"name": "Wireless Mouse"}
update_data = {"$inc": {"stock.warehouse_A": -10}, "$set": {"last_modified": datetime.now()}}
update_result = products_col.update_one(update_filter, update_data)
print(f"Modified count: {update_result.modified_count}")# 删除文档
delete_result = products_col.delete_many({"price": {"$gt": 200}})
print(f"Deleted count: {delete_result.deleted_count}")
2.3 聚合管道实战
# 统计各仓库库存总量
pipeline = [{"$unwind": "$stock"},  # 展开嵌套文档{"$group": {"_id": "$stock.warehouse","total_stock": {"$sum": "$stock.quantity"}}},{"$sort": {"total_stock": -1}}
]
results = products_col.aggregate(pipeline)
for res in results:print(f"Warehouse {res['_id']}: {res['total_stock']} units")
2.4 分批次插入百万级数据(进阶)
from pymongo import MongoClient
from faker import Faker
import timeclient = MongoClient('mongodb://localhost:27017/')
db = client['bigdata']
collection = db['user_profiles']fake = Faker()
batch_size = 5000  # 分批次插入减少内存压力def generate_batch(batch_size):return [{"name": fake.name(),"email": fake.email(),"last_login": fake.date_time_this_year()} for _ in range(batch_size)]start_time = time.time()
for _ in range(200):  # 总数据量100万batch_data = generate_batch(batch_size)collection.insert_many(batch_data, ordered=False)  # 无序插入提升速度print(f"已插入 {(i+1)*batch_size} 条数据")print(f"总耗时: {time.time()-start_time:.2f}秒") 
2.5 分批次插入百万级数据(进阶)
# 分析电商订单数据(含嵌套结构)
pipeline = [{"$unwind": "$items"},  # 展开订单中的商品数组{"$match": {"status": "completed"}},  # 筛选已完成订单{"$group": {"_id": "$items.category","total_sales": {"$sum": "$items.price"},"avg_quantity": {"$avg": "$items.quantity"},"top_product": {"$max": "$items.name"}}},{"$sort": {"total_sales": -1}},{"$limit": 10}
]orders_col = db["orders"]
results = orders_col.aggregate(pipeline)for res in results:print(f"品类 {res['_id']}: 销售额{res['total_sales']}元")

三、生产环境进阶配置

3.1 性能优化关键措施
# 创建索引(提升查询速度)
products_col.create_index([("name", pymongo.ASCENDING)], unique=True)
products_col.create_index([("price", pymongo.ASCENDING), ("tags", pymongo.ASCENDING)])# 批量写入提升吞吐量
bulk_ops = [pymongo.InsertOne({"name": "Keyboard", "price": 89.99}),pymongo.UpdateOne({"name": "Mouse"}, {"$set": {"price": 59.99}}),pymongo.DeleteOne({"name": "Earphones"})
]
results = products_col.bulk_write(bulk_ops)
3.2 高可用架构配置
# MongoDB副本集配置(3节点)
replication:replSetName: "rs0"members:- _id: 0, host: "mongo1:27017"- _id: 1, host: "mongo2:27017"- _id: 2, host: "mongo3:27017", arbiterOnly: true
3.3 安全加固方案
# 启用身份验证
use admin
db.createUser({user: "admin",pwd: "securepassword",roles: [ { role: "userAdminAnyDatabase", db: "admin" } ]
})# 配置网络加密
net:tls:mode: requireTLScertificateKeyFile: /etc/ssl/mongo.pem

四、总结与最佳实践

4.1 技术选型对比‌:
特性MongoDBMySQL
数据模型动态文档固定表结构
扩展方式水平分片垂直扩展
事务支持4.0+版本支持原生完善支持
适用场景日志/用户行为数据金融交易系统
4.2 性能优化原则‌:
  1. ‌Working Set‌原则:确保常用数据能放入内存
  2. ‌索引覆盖‌:通过组合索引避免回表查询
  3. ‌分片键设计‌:选择高基数、易分散的字段
4‌.3 避坑指南‌:
  • 避免文档无限制增长(推荐设置capped collection)
  • 慎用$where操作符(导致全表扫描)
  • 生产环境必须配置副本集与定期备份
Python爬虫相关文章(推荐)
Python爬虫介绍Python爬虫(1)Python爬虫:从原理到实战,一文掌握数据采集核心技术
HTTP协议解析Python爬虫(2)Python爬虫入门:从HTTP协议解析到豆瓣电影数据抓取实战
HTML核心技巧Python爬虫(3)HTML核心技巧:从零掌握class与id选择器,精准定位网页元素
CSS核心机制Python爬虫(4)CSS核心机制:全面解析选择器分类、用法与实战应用
静态页面抓取实战Python爬虫(5)静态页面抓取实战:requests库请求头配置与反反爬策略详解
静态页面解析实战Python爬虫(6)静态页面解析实战:BeautifulSoup与lxml(XPath)高效提取数据指南
Python数据存储实战 CSV文件Python爬虫(7)Python数据存储实战:CSV文件读写与复杂数据处理指南
Python数据存储实战 JSON文件Python爬虫(8)Python数据存储实战:JSON文件读写与复杂结构化数据处理指南
Python数据存储实战 MySQL数据库Python爬虫(9)Python数据存储实战:基于pymysql的MySQL数据库操作详解

相关文章:

  • 大模型落地难题:如何用LoRA低成本微调企业私有模型?
  • C++程序退出时的对象析构陷阱:深度解析与避坑指南
  • Spring、Spring MVC 与 Spring Boot 的关系与核心用途
  • 【爬虫】案例-获取cbh电影
  • 23G显存可以跑多大尺寸的Qwen3?
  • JavaSE第12篇:接口interface
  • Java练习2
  • 解决 Flutter 在 iOS 真机上构建失败的问题
  • 9.idea中创建springboot项目
  • Javascript 中的继承?如何实现继承?
  • docker-vllm运行大模型
  • 高翔视觉slam中常见的OpenCV和Eigen的几种数据类型的内存布局及分配方式详解
  • 从代码学习深度学习 - 目标检测前置知识(一) PyTorch 版
  • 5.4.2 MVVM例2-用户控件的使用(水在水管中流动的实例)
  • 快速了解Go+rpc
  • MATLAB画一把伞
  • React Three Fiber 详解:现代 Web3D 的利器
  • Vue3取消网络请求的方法(AbortController)
  • jmeter-Beashell获取http请求体json
  • Flutter:组件10、倒计时
  • 体坛联播|欧冠半决赛阿森纳主场不敌巴黎,北京男篮险胜山西
  • 日趋活跃!2024年我国数据生产总量同比增长25%
  • 诗词文赋俱当歌,听一听古诗词中的音乐性
  • 亮剑浦江丨上海网信部门处罚一批医疗服务类互联网企业,三大类问题值得关注
  • 幸福航空取消“五一”前航班,财务人员透露“没钱飞了”
  • 泰山景区管委会:未经审核同意不得擅自举办竞速类登山活动