image tokenizer 原理和代码
image tokenizer原理步骤:
(1)图像分块:将输入图像划分为N×N(如16×16)的patch
(2)线性投影:通过卷积或全连接层将每个patch展平为embedding
(3)添加位置编码:将position encoding加到patch embedding
huggingface/transformers调用代码:
from transformers import ViTImageProcessor, ViTModel
processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224")
model = ViTModel.from_pretrained("google/vit-base-patch16-224")
inputs = processor(images=image, return_tensors="pt")
参考源码:
github.com/google-research/vision_transformer
github.com/pytorch/vision/blob/main/torchvision/models/vision_transformer.py
github.com/huggingface/transformers/blob/main/src/transformers/models/vit/modeling_vit.py
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.dtcms.com/a/126104.html
如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!