当前位置: 首页 > news >正文

Porting Layer - 跨平台函数接口封装(RTOS/Windows)- C语言

目录

  • 概述
  • 具体实现
  • 使用说明

概述

在嵌入式开发中,一般会在某个开发板上某个系统上实现某个功能,为了开发模块的移植性更好,因此需要对不同的操作系统有一层封装层。当换一个操作系统时,模块中的code不用修改,只需要根据不同的操作系统将封装层的函数实现即可,起到了模块和操作系统的解耦。同理,类似的还有模块与开发板的库函数(相当于工具模块),如输入输出,Socket,时间日期,内存管理等。如下实现了两个常用操作系统的封装层,以便跑在嵌入式中的功能运行在Window上,以方便调试优化。

具体实现

以下是一个用C语言实现的跨平台函数接口层,可以同时适用于RTOS(如FreeRTOS)和Windows环境。通过宏定义区分不同平台,提供统一的API接口。

/**
 * @file platform_api.h
 * @brief 跨平台接口层(RTOS/Windows)
 */

#ifndef PLATFORM_API_H
#define PLATFORM_API_H

#include <stdint.h>
#include <stdbool.h>

// 平台检测宏
#if defined(_WIN32) || defined(_WIN64)
    #define PLATFORM_WINDOWS 1
    #include <windows.h>
#elif defined(FREERTOS) || defined(RT_THREAD) || defined(UCOSII) || defined(UCOSIII)
    #define PLATFORM_RTOS 1
    #include "FreeRTOS.h"
    #include "task.h"
    #include "queue.h"
    #include "semphr.h"
#else
    #error "Unsupported platform!"
#endif

#ifdef __cplusplus
extern "C" {
#endif

/*---------------------------------
 * 线程相关接口
 *--------------------------------*/
typedef void (*thread_func_t)(void* arg);

/**
 * @brief 创建线程
 * @param func 线程函数
 * @param arg 线程参数
 * @param stack_size 栈大小(字节)
 * @param priority 优先级(RTOS下具体含义取决于实现)
 * @return 线程句柄,NULL表示失败
 */
void* platform_thread_create(thread_func_t func, void* arg, uint32_t stack_size, int priority);

/**
 * @brief 销毁线程
 * @param thread 线程句柄
 */
void platform_thread_destroy(void* thread);

/**
 * @brief 当前线程休眠(毫秒)
 * @param ms 休眠时间(毫秒)
 */
void platform_sleep(uint32_t ms);

/**
 * @brief 获取当前线程ID
 * @return 线程ID
 */
uint32_t platform_thread_id(void);

/*---------------------------------
 * 互斥锁接口
 *--------------------------------*/
typedef void* platform_mutex_t;

/**
 * @brief 创建互斥锁
 * @return 互斥锁句柄
 */
platform_mutex_t platform_mutex_create(void);

/**
 * @brief 销毁互斥锁
 * @param mutex 互斥锁句柄
 */
void platform_mutex_destroy(platform_mutex_t mutex);

/**
 * @brief 锁定互斥锁
 * @param mutex 互斥锁句柄
 */
void platform_mutex_lock(platform_mutex_t mutex);

/**
 * @brief 尝试锁定互斥锁
 * @param mutex 互斥锁句柄
 * @return true-成功锁定,false-锁定失败
 */
bool platform_mutex_trylock(platform_mutex_t mutex);

/**
 * @brief 解锁互斥锁
 * @param mutex 互斥锁句柄
 */
void platform_mutex_unlock(platform_mutex_t mutex);

/*---------------------------------
 * 信号量接口
 *--------------------------------*/
typedef void* platform_sem_t;

/**
 * @brief 创建信号量
 * @param max_count 最大计数值
 * @param init_count 初始计数值
 * @return 信号量句柄
 */
platform_sem_t platform_sem_create(uint32_t max_count, uint32_t init_count);

/**
 * @brief 销毁信号量
 * @param sem 信号量句柄
 */
void platform_sem_destroy(platform_sem_t sem);

/**
 * @brief 等待信号量
 * @param sem 信号量句柄
 * @param timeout_ms 超时时间(毫秒),0xFFFFFFFF表示永久等待
 * @return true-成功获取,false-超时或失败
 */
bool platform_sem_wait(platform_sem_t sem, uint32_t timeout_ms);

/**
 * @brief 释放信号量
 * @param sem 信号量句柄
 */
void platform_sem_post(platform_sem_t sem);

/*---------------------------------
 * 消息队列接口
 *--------------------------------*/
typedef void* platform_queue_t;

/**
 * @brief 创建消息队列
 * @param item_size 每个消息项的大小(字节)
 * @param queue_size 队列容量(消息项数量)
 * @return 消息队列句柄
 */
platform_queue_t platform_queue_create(uint32_t item_size, uint32_t queue_size);

/**
 * @brief 销毁消息队列
 * @param queue 消息队列句柄
 */
void platform_queue_destroy(platform_queue_t queue);

/**
 * @brief 发送消息到队列
 * @param queue 消息队列句柄
 * @param item 消息数据指针
 * @param timeout_ms 超时时间(毫秒)
 * @return true-成功,false-失败
 */
bool platform_queue_send(platform_queue_t queue, const void* item, uint32_t timeout_ms);

/**
 * @brief 从队列接收消息
 * @param queue 消息队列句柄
 * @param item 接收缓冲区指针
 * @param timeout_ms 超时时间(毫秒)
 * @return true-成功,false-失败
 */
bool platform_queue_receive(platform_queue_t queue, void* item, uint32_t timeout_ms);

/*---------------------------------
 * 时间相关接口
 *--------------------------------*/
/**
 * @brief 获取系统启动后的毫秒数
 * @return 毫秒数
 */
uint32_t platform_get_tick_count(void);

/**
 * @brief 获取当前时间(秒和微秒)
 * @param sec 存储秒数的指针
 * @param usec 存储微秒数的指针
 */
void platform_get_time(uint32_t* sec, uint32_t* usec);

#ifdef __cplusplus
}
#endif

#endif /* PLATFORM_API_H */

下面是实现文件 platform_api.c:

/**
 * @file platform_api.c
 * @brief 跨平台接口层实现
 */

#include "platform_api.h"
#include <string.h>

/*---------------------------------
 * 线程相关实现
 *--------------------------------*/
#if PLATFORM_WINDOWS

// Windows实现
struct win_thread_wrapper {
    HANDLE handle;
    thread_func_t func;
    void* arg;
};

static DWORD WINAPI win_thread_entry(LPVOID lpParam)
{
    struct win_thread_wrapper* wrapper = (struct win_thread_wrapper*)lpParam;
    wrapper->func(wrapper->arg);
    free(wrapper);
    return 0;
}

void* platform_thread_create(thread_func_t func, void* arg, uint32_t stack_size, int priority)
{
    struct win_thread_wrapper* wrapper = malloc(sizeof(*wrapper));
    if (!wrapper) return NULL;
    
    wrapper->func = func;
    wrapper->arg = arg;
    
    wrapper->handle = CreateThread(NULL, stack_size, win_thread_entry, wrapper, 0, NULL);
    if (!wrapper->handle) {
        free(wrapper);
        return NULL;
    }
    
    // Windows线程优先级映射
    int win_priority;
    if (priority < -2) win_priority = THREAD_PRIORITY_LOWEST;
    else if (priority < 0) win_priority = THREAD_PRIORITY_BELOW_NORMAL;
    else if (priority == 0) win_priority = THREAD_PRIORITY_NORMAL;
    else if (priority <= 2) win_priority = THREAD_PRIORITY_ABOVE_NORMAL;
    else win_priority = THREAD_PRIORITY_HIGHEST;
    
    SetThreadPriority(wrapper->handle, win_priority);
    return wrapper;
}

void platform_thread_destroy(void* thread)
{
    struct win_thread_wrapper* wrapper = (struct win_thread_wrapper*)thread;
    if (wrapper) {
        WaitForSingleObject(wrapper->handle, INFINITE);
        CloseHandle(wrapper->handle);
        free(wrapper);
    }
}

void platform_sleep(uint32_t ms)
{
    Sleep(ms);
}

uint32_t platform_thread_id(void)
{
    return (uint32_t)GetCurrentThreadId();
}

#elif PLATFORM_RTOS

// RTOS实现
void* platform_thread_create(thread_func_t func, void* arg, uint32_t stack_size, int priority)
{
    TaskHandle_t task = NULL;
    // FreeRTOS优先级是数字越大优先级越高,通常配置为0-(configMAX_PRIORITIES-1)
    if (priority < 0) priority = 0;
    if (priority > configMAX_PRIORITIES - 1) priority = configMAX_PRIORITIES - 1;
    
    xTaskCreate((TaskFunction_t)func, "platform_thread", stack_size/sizeof(StackType_t), 
                arg, (UBaseType_t)priority, &task);
    return task;
}

void platform_thread_destroy(void* thread)
{
    if (thread) {
        vTaskDelete(thread);
    }
}

void platform_sleep(uint32_t ms)
{
    vTaskDelay(pdMS_TO_TICKS(ms));
}

uint32_t platform_thread_id(void)
{
    return (uint32_t)xTaskGetCurrentTaskHandle();
}

#endif

/*---------------------------------
 * 互斥锁实现
 *--------------------------------*/
#if PLATFORM_WINDOWS

platform_mutex_t platform_mutex_create(void)
{
    CRITICAL_SECTION* cs = malloc(sizeof(CRITICAL_SECTION));
    if (cs) {
        InitializeCriticalSection(cs);
    }
    return cs;
}

void platform_mutex_destroy(platform_mutex_t mutex)
{
    if (mutex) {
        DeleteCriticalSection((CRITICAL_SECTION*)mutex);
        free(mutex);
    }
}

void platform_mutex_lock(platform_mutex_t mutex)
{
    EnterCriticalSection((CRITICAL_SECTION*)mutex);
}

bool platform_mutex_trylock(platform_mutex_t mutex)
{
    return TryEnterCriticalSection((CRITICAL_SECTION*)mutex) != 0;
}

void platform_mutex_unlock(platform_mutex_t mutex)
{
    LeaveCriticalSection((CRITICAL_SECTION*)mutex);
}

#elif PLATFORM_RTOS

platform_mutex_t platform_mutex_create(void)
{
    return (platform_mutex_t)xSemaphoreCreateMutex();
}

void platform_mutex_destroy(platform_mutex_t mutex)
{
    vSemaphoreDelete((SemaphoreHandle_t)mutex);
}

void platform_mutex_lock(platform_mutex_t mutex)
{
    xSemaphoreTake((SemaphoreHandle_t)mutex, portMAX_DELAY);
}

bool platform_mutex_trylock(platform_mutex_t mutex)
{
    return xSemaphoreTake((SemaphoreHandle_t)mutex, 0) == pdTRUE;
}

void platform_mutex_unlock(platform_mutex_t mutex)
{
    xSemaphoreGive((SemaphoreHandle_t)mutex);
}

#endif

/*---------------------------------
 * 信号量实现
 *--------------------------------*/
#if PLATFORM_WINDOWS

platform_sem_t platform_sem_create(uint32_t max_count, uint32_t init_count)
{
    HANDLE sem = CreateSemaphore(NULL, init_count, max_count, NULL);
    return (platform_sem_t)sem;
}

void platform_sem_destroy(platform_sem_t sem)
{
    CloseHandle((HANDLE)sem);
}

bool platform_sem_wait(platform_sem_t sem, uint32_t timeout_ms)
{
    DWORD timeout = (timeout_ms == 0xFFFFFFFF) ? INFINITE : timeout_ms;
    return WaitForSingleObject((HANDLE)sem, timeout) == WAIT_OBJECT_0;
}

void platform_sem_post(platform_sem_t sem)
{
    ReleaseSemaphore((HANDLE)sem, 1, NULL);
}

#elif PLATFORM_RTOS

platform_sem_t platform_sem_create(uint32_t max_count, uint32_t init_count)
{
    return (platform_sem_t)xSemaphoreCreateCounting(max_count, init_count);
}

void platform_sem_destroy(platform_sem_t sem)
{
    vSemaphoreDelete((SemaphoreHandle_t)sem);
}

bool platform_sem_wait(platform_sem_t sem, uint32_t timeout_ms)
{
    TickType_t timeout = (timeout_ms == 0xFFFFFFFF) ? portMAX_DELAY : pdMS_TO_TICKS(timeout_ms);
    return xSemaphoreTake((SemaphoreHandle_t)sem, timeout) == pdTRUE;
}

void platform_sem_post(platform_sem_t sem)
{
    xSemaphoreGive((SemaphoreHandle_t)sem);
}

#endif

/*---------------------------------
 * 消息队列实现
 *--------------------------------*/
#if PLATFORM_WINDOWS

struct win_queue {
    uint32_t item_size;
    uint32_t queue_size;
    uint8_t* buffer;
    uint32_t head;
    uint32_t tail;
    uint32_t count;
    HANDLE sem_empty;
    HANDLE sem_full;
    CRITICAL_SECTION lock;
};

platform_queue_t platform_queue_create(uint32_t item_size, uint32_t queue_size)
{
    struct win_queue* queue = malloc(sizeof(struct win_queue));
    if (!queue) return NULL;
    
    queue->item_size = item_size;
    queue->queue_size = queue_size;
    queue->buffer = malloc(item_size * queue_size);
    if (!queue->buffer) {
        free(queue);
        return NULL;
    }
    
    queue->head = 0;
    queue->tail = 0;
    queue->count = 0;
    
    queue->sem_empty = CreateSemaphore(NULL, queue_size, queue_size, NULL);
    queue->sem_full = CreateSemaphore(NULL, 0, queue_size, NULL);
    InitializeCriticalSection(&queue->lock);
    
    return (platform_queue_t)queue;
}

void platform_queue_destroy(platform_queue_t queue)
{
    struct win_queue* q = (struct win_queue*)queue;
    if (q) {
        DeleteCriticalSection(&q->lock);
        CloseHandle(q->sem_empty);
        CloseHandle(q->sem_full);
        free(q->buffer);
        free(q);
    }
}

bool platform_queue_send(platform_queue_t queue, const void* item, uint32_t timeout_ms)
{
    struct win_queue* q = (struct win_queue*)queue;
    DWORD timeout = (timeout_ms == 0xFFFFFFFF) ? INFINITE : timeout_ms;
    
    if (WaitForSingleObject(q->sem_empty, timeout) != WAIT_OBJECT_0) {
        return false;
    }
    
    EnterCriticalSection(&q->lock);
    
    memcpy(q->buffer + q->tail * q->item_size, item, q->item_size);
    q->tail = (q->tail + 1) % q->queue_size;
    q->count++;
    
    LeaveCriticalSection(&q->lock);
    ReleaseSemaphore(q->sem_full, 1, NULL);
    return true;
}

bool platform_queue_receive(platform_queue_t queue, void* item, uint32_t timeout_ms)
{
    struct win_queue* q = (struct win_queue*)queue;
    DWORD timeout = (timeout_ms == 0xFFFFFFFF) ? INFINITE : timeout_ms;
    
    if (WaitForSingleObject(q->sem_full, timeout) != WAIT_OBJECT_0) {
        return false;
    }
    
    EnterCriticalSection(&q->lock);
    
    memcpy(item, q->buffer + q->head * q->item_size, q->item_size);
    q->head = (q->head + 1) % q->queue_size;
    q->count--;
    
    LeaveCriticalSection(&q->lock);
    ReleaseSemaphore(q->sem_empty, 1, NULL);
    return true;
}

#elif PLATFORM_RTOS

platform_queue_t platform_queue_create(uint32_t item_size, uint32_t queue_size)
{
    return (platform_queue_t)xQueueCreate(queue_size, item_size);
}

void platform_queue_destroy(platform_queue_t queue)
{
    vQueueDelete((QueueHandle_t)queue);
}

bool platform_queue_send(platform_queue_t queue, const void* item, uint32_t timeout_ms)
{
    TickType_t timeout = (timeout_ms == 0xFFFFFFFF) ? portMAX_DELAY : pdMS_TO_TICKS(timeout_ms);
    return xQueueSend((QueueHandle_t)queue, item, timeout) == pdTRUE;
}

bool platform_queue_receive(platform_queue_t queue, void* item, uint32_t timeout_ms)
{
    TickType_t timeout = (timeout_ms == 0xFFFFFFFF) ? portMAX_DELAY : pdMS_TO_TICKS(timeout_ms);
    return xQueueReceive((QueueHandle_t)queue, item, timeout) == pdTRUE;
}

#endif

/*---------------------------------
 * 时间相关实现
 *--------------------------------*/
#if PLATFORM_WINDOWS

uint32_t platform_get_tick_count(void)
{
    return GetTickCount();
}

void platform_get_time(uint32_t* sec, uint32_t* usec)
{
    FILETIME ft;
    ULARGE_INTEGER li;
    GetSystemTimeAsFileTime(&ft);
    li.LowPart = ft.dwLowDateTime;
    li.HighPart = ft.dwHighDateTime;
    
    // 从1601年1月1日到1970年1月1日的100纳秒间隔数
    li.QuadPart -= 116444736000000000ULL;
    
    if (sec) *sec = (uint32_t)(li.QuadPart / 10000000ULL);
    if (usec) *usec = (uint32_t)((li.QuadPart % 10000000ULL) / 10ULL);
}

#elif PLATFORM_RTOS

uint32_t platform_get_tick_count(void)
{
    return xTaskGetTickCount() * portTICK_PERIOD_MS;
}

void platform_get_time(uint32_t* sec, uint32_t* usec)
{
    // RTOS通常没有标准的时间获取函数,这里简单实现
    uint32_t ticks = xTaskGetTickCount();
    uint32_t ms = ticks * portTICK_PERIOD_MS;
    
    if (sec) *sec = ms / 1000;
    if (usec) *usec = (ms % 1000) * 1000;
}

#endif

使用说明

1.平台选择:
在Windows环境下编译时,会自动使用Windows API实现,在RTOS环境下编译时,会自动使用RTOS API实现,可以通过定义FREERTOS或其他RTOS宏来启用RTOS模式

2.基本功能:

  • 线程创建和管理
  • 互斥锁
  • 信号量
  • 消息队列
  • 时间相关功能
    3.使用示例:
#include "platform_api.h"
#include <stdio.h>

void thread_function(void* arg)
{
    int id = *(int*)arg;
    for (int i = 0; i < 5; i++) {
        printf("Thread %d: count %d\n", id, i);
        platform_sleep(1000);
    }
}

int main()
{
    // 创建线程
    int id1 = 1, id2 = 2;
    void* thread1 = platform_thread_create(thread_function, &id1, 4096, 1);
    void* thread2 = platform_thread_create(thread_function, &id2, 4096, 1);
    
    // 等待线程结束
    platform_thread_destroy(thread1);
    platform_thread_destroy(thread2);
    
    return 0;
}

相关文章:

  • 智慧医疗数据集
  • 跨境多商户供销电商系统:三位一体生态,赋能企业全球化无界合作
  • 在MDK新版本中添加AC5编译器支持
  • 演员徐梓辰正式加入创星演员出道计划,开启演艺新纪元
  • vmware、centos: 快照、redis集群克隆、启动异常
  • 流程控制语句练习题总结
  • OJ--第N个泰波那契数列
  • 钢板矫平机:重塑材料加工新标杆
  • 刻意练习:如何从新手到大师
  • VS Code-i18n Ally国际化插件
  • Firebase崩溃:DialogFragment/BottomSheetDialogFragment缺乏无参构造函数
  • 智能指针和STL库学习思维导图和练习
  • 4.7学习总结 java集合进阶
  • 信息系统项目管理师-第十二章-项目质量管理
  • 搭建复现环境
  • 06.unity 游戏开发-unity2D工程的创建及使用方式和区别
  • 基础知识补充篇:认识区块链浏览器
  • 【C++算法】49.分治_归并_计算右侧小于当前元素的个数
  • 免费Deepseek-v3接口实现Browser-Use Web UI:浏览器自动化本地模拟抓取数据实录
  • 如何为多个条件构建 Bson 过滤器
  • 杭州网站改版公司电话/人工智能培训师
  • 齐齐哈尔企业网站排名优化/企业做推广有用吗
  • 网站按钮样式/自媒体平台注册
  • 苏州响应式网站建设/2023最火的十大新闻
  • 淄博外贸网站建设公司/海外推广方法有哪些
  • 九江建网站报价/哈尔滨百度推广联系人