当前位置: 首页 > wzjs >正文

wordpress 504沈阳网站建设seo优化

wordpress 504,沈阳网站建设seo优化,空调维修网站建设,wordpress怎么考别人的文章目录 巴什博奕1.2.L.下棋(博弈) 巴什博奕1.2.L.下棋(博弈) Nim博弈求先手有几种选择 斐波那契博弈威佐夫博弈(Wythoff Game)SG打表SG函数的基本定义例题:C. Battlesg打表标程 Nim博弈求先手…

文章目录

  • 巴什博奕
      • 1.
      • 2.
      • L.下棋(博弈)
  • 巴什博奕
      • 1.
      • 2.
      • L.下棋(博弈)
  • Nim博弈
      • 求先手有几种选择
  • 斐波那契博弈
  • 威佐夫博弈(Wythoff Game)
  • SG打表
      • SG函数的基本定义
      • 例题:C. Battle
        • sg打表
        • 标程
  • Nim博弈
      • 求先手有几种选择
  • 斐波那契博弈
  • 威佐夫博弈(Wythoff Game)
  • SG打表
      • SG函数的基本定义
      • 例题:C. Battle
        • sg打表
        • 标程

【算法讲解095【必备】博弈类问题必备内容详解-上】https://www.bilibili.com/video/BV1T5411i7Gg?vd_source=67186f29c3efb728bcff34035cf5aba2

巴什博奕

1.

每个人可以拿1~m个石子。拿走最后一颗的人赢。

这个问题与 m+1,有关。不论先手拿多少,后手总有办法使他俩拿的总和为 m+1的倍数。所以只需要判断初始 n 是不是 m 的倍数,是 的话,后手赢,反之,先手赢。


2.

每次可以拿 p k p^k pk , p 为素数 ,k 为自然数

判断初始 n 是不是 6 的倍数,是 的话,后手赢,反之,先手赢。

因为可以拿(1,2,3,4,5),而 6 的倍数 一定拿不了。首先 6 不是质数,而它的两个因数 2,3也不能组成 6 的倍数。


L.下棋(博弈)

文章目录

  • 巴什博奕
      • 1.
      • 2.
      • L.下棋(博弈)
  • 巴什博奕
      • 1.
      • 2.
      • L.下棋(博弈)
  • Nim博弈
      • 求先手有几种选择
  • 斐波那契博弈
  • 威佐夫博弈(Wythoff Game)
  • SG打表
      • SG函数的基本定义
      • 例题:C. Battle
        • sg打表
        • 标程
  • Nim博弈
      • 求先手有几种选择
  • 斐波那契博弈
  • 威佐夫博弈(Wythoff Game)
  • SG打表
      • SG函数的基本定义
      • 例题:C. Battle
        • sg打表
        • 标程

【算法讲解095【必备】博弈类问题必备内容详解-上】https://www.bilibili.com/video/BV1T5411i7Gg?vd_source=67186f29c3efb728bcff34035cf5aba2

巴什博奕

1.

每个人可以拿1~m个石子。拿走最后一颗的人赢。

这个问题与 m+1,有关。不论先手拿多少,后手总有办法使他俩拿的总和为 m+1的倍数。所以只需要判断初始 n 是不是 m 的倍数,是 的话,后手赢,反之,先手赢。


2.

每次可以拿 p k p^k pk , p 为素数 ,k 为自然数

判断初始 n 是不是 6 的倍数,是 的话,后手赢,反之,先手赢。

因为可以拿(1,2,3,4,5),而 6 的倍数 一定拿不了。首先 6 不是质数,而它的两个因数 2,3也不能组成 6 的倍数。


L.下棋(博弈)

在这里插入图片描述

20250507ICPC训练赛 - Virtual Judge

对于奇数,显而易见 答案是2.

因为每次拿的数字x,它的二进制不能包含0,所以x 一定是奇数。对于一个奇数,需要拿奇数次奇数,所以最终先手必赢。

想到这,就应该类比!!!

可以从二进制不能出现0,想到 每次拿的数字x的k进制末尾数字不能是0(因为0不是任何数的因子),只看末尾就可以了。

我们每次只拿k进制下的个位数,这样一定可以拿。(5进制下,可以拿1 ~ 4 。k进制下,可以拿1~K-1)

现在有 n 个棋子, n 的k 进制末尾数字是0。

下一个人不管拿多少,他拿的数字x在k进制下末尾数字肯定不是0。这样 n-x ,此时剩余的棋子数量在k 进制下末尾数字一定不为0。

而最终需要变成 0。

例如n= 6,在2进制下为110 ,x=1 或者 3

n-x =5 或者 3 , 2进制下末尾数字一定不为0

下下一个人,只需要拿剩余的棋子数量 在k 进制下的末尾数字(一定可以拿),此时就可以保证它拿完之后,棋子数量在k 进制下末尾数字一定为 0。


所以,我们只需要保证 n 在k 进制下 末尾数字不为零,此时先手去拿,使其变成0,那么最终一定是先手赢。

而只有 k 不是 n 的因子,就可以满足。

Nim博弈

n堆石子,拿走任意数量,最后一个拿的获胜。

n堆全为0的时候 异或=0。当异或为0,另一个人不论拿走多少,异或绝对不等于0.当异或不等于 0 ,总有办法,拿走一个使异或等于0.

初始异或不为0,先手赢。为0.后手赢

反Nim博弈 :谁最后拿,谁输。

特判全是1的情况

判断初始异或是否等于0,

求先手有几种选择

只需满足sum^a[i]<=a[i]

循环n次不断累加。

斐波那契博弈

  1. 单堆石子版本
    • 初始石子数为 n ,两人轮流取石子。
    • 规则
      1. 先手第一次至少取1颗,但不能全部取完 。
      2. 后续每次取的石子数需满足:1≤当前取数≤ 2×对手上次取数。
    • 胜利条件:取走最后一颗石子者获胜。
  2. 两堆石子版本(与威佐夫博弈的关联)
    • 若涉及两堆石子(如威佐夫博弈),当两堆石子数分别为斐波那契数列中的相邻项时,后手有必胜策略。

威佐夫博弈(Wythoff Game)

有两堆石子,数量任意,可以不同,游戏开始由两个人轮流取石子
游戏规定,每次有两种不同的取法
1)在任意的一堆中取走任意多的石子
2)可以在两堆中同时取走相同数量的石子
最后把石子全部取完者为胜者
现在给出初始的两堆石子的数目,返回先手能不能获胜
测试链接:https://www.luoqu.com.cn/problem/P2252

小 != (int)(大 - 小)* 黄金分割比例,先手赢
小 == (int)(大 - 小)* 黄金分割比例,后手赢

  • 黄金分割比例φ的整数部分,其中φ = (1 + √5)/2 ≈ 1.618

SG打表

SG函数的基本定义

SG函数(Sprague-Grundy Function)是博弈论中解决公平组合游戏(Impartial Combinatorial Games,简称ICG)的重要工具。

  • 定义
    SG函数的参数是游戏的状态,返回值是一个非负整数。
    公式:

    $sg(x)=mex({sg(y)∣y是x的后继状态}) $

    其中,mex(Minimum EXcludant)表示从集合中排除的最小非负整数。例如,mex{0, 1, 2} = 3。

  • 后继状态
    后继状态是指从当前状态通过合法操作能够到达的所有状态。

  • 性质1:如果 sg(x)=0,则当前状态 x 是必败状态。

  • 性质2:如果 sg(x)≠0,则当前状态 x 是必胜状态。


在多个独立游戏的组合(即组合游戏)中,整体游戏的胜负性可以通过各子游戏的SG函数值的异或和来判断:

  • 定理

    若游戏由多个独立子游戏组成,则整体游戏的SG函数值为各子游戏SG函数值的异或和:

    sg(x1,x2,…,xn)=sg(x1)⊕sg(x2)⊕⋯⊕sg(xn)

  • 胜负判断

    • 如果异或和为0,当前玩家处于必败状态(对手有必胜策略)。
    • 如果异或和不为0,当前玩家处于必胜状态(可通过操作使异或和变为0)。

例题:C. Battle

Problem - C - Codeforces

易知,当p=3:

sg(1) = 1 , sg(2) = 0 , sg(3)= 1

sg打表
int f[300],p=3;
int sg(int x) {if(f[x]!=-1) {return f[x];}set<int>s;for(int i=0; i<10; i++) {if(x>=pow(p,i)) {s.insert(sg(x-pow(p,i)));}}for(int i=0;; i++) {if(!s.count(i)) {return f[x]=i;}}}
void solve()
{fir(i,1,200)f[i]=-1;fir(i,1,100)cout<<sg(i)<<" ";
}

可以发现规律,奇数为:10101010

偶数也有规律

标程
int a[N];
void solve()
{int n,p,ans=0;cin>>n>>p;fir(i,1,n)cin>>a[i];fir(i,1,n){if(p&1)ans^=(a[i]%2);else{if(a[i]%(p+1)==0)ans^=0;else if(a[i]%(p+1)==p)ans^=2;elseans^=(a[i]%(p+1)%2);}}if(ans!=0)cout<<"GOOD"<<'\n';else cout<<"BAD"<<'\n';
}

20250507ICPC训练赛 - Virtual Judge

对于奇数,显而易见 答案是2.

因为每次拿的数字x,它的二进制不能包含0,所以x 一定是奇数。对于一个奇数,需要拿奇数次奇数,所以最终先手必赢。

想到这,就应该类比!!!

可以从二进制不能出现0,想到 每次拿的数字x的k进制末尾数字不能是0(因为0不是任何数的因子),只看末尾就可以了。

我们每次只拿k进制下的个位数,这样一定可以拿。(5进制下,可以拿1 ~ 4 。k进制下,可以拿1~K-1)

现在有 n 个棋子, n 的k 进制末尾数字是0。

下一个人不管拿多少,他拿的数字x在k进制下末尾数字肯定不是0。这样 n-x ,此时剩余的棋子数量在k 进制下末尾数字一定不为0。

而最终需要变成 0。

例如n= 6,在2进制下为110 ,x=1 或者 3

n-x =5 或者 3 , 2进制下末尾数字一定不为0

下下一个人,只需要拿剩余的棋子数量 在k 进制下的末尾数字(一定可以拿),此时就可以保证它拿完之后,棋子数量在k 进制下末尾数字一定为 0。


所以,我们只需要保证 n 在k 进制下 末尾数字不为零,此时先手去拿,使其变成0,那么最终一定是先手赢。

而只有 k 不是 n 的因子,就可以满足。

Nim博弈

n堆石子,拿走任意数量,最后一个拿的获胜。

n堆全为0的时候 异或=0。当异或为0,另一个人不论拿走多少,异或绝对不等于0.当异或不等于 0 ,总有办法,拿走一个使异或等于0.

初始异或不为0,先手赢。为0.后手赢

反Nim博弈 :谁最后拿,谁输。

特判全是1的情况

判断初始异或是否等于0,

求先手有几种选择

只需满足sum^a[i]<=a[i]

循环n次不断累加。

斐波那契博弈

  1. 单堆石子版本
    • 初始石子数为 n ,两人轮流取石子。
    • 规则
      1. 先手第一次至少取1颗,但不能全部取完 。
      2. 后续每次取的石子数需满足:1≤当前取数≤ 2×对手上次取数。
    • 胜利条件:取走最后一颗石子者获胜。
  2. 两堆石子版本(与威佐夫博弈的关联)
    • 若涉及两堆石子(如威佐夫博弈),当两堆石子数分别为斐波那契数列中的相邻项时,后手有必胜策略。

威佐夫博弈(Wythoff Game)

有两堆石子,数量任意,可以不同,游戏开始由两个人轮流取石子
游戏规定,每次有两种不同的取法
1)在任意的一堆中取走任意多的石子
2)可以在两堆中同时取走相同数量的石子
最后把石子全部取完者为胜者
现在给出初始的两堆石子的数目,返回先手能不能获胜
测试链接:https://www.luoqu.com.cn/problem/P2252

小 != (int)(大 - 小)* 黄金分割比例,先手赢
小 == (int)(大 - 小)* 黄金分割比例,后手赢

  • 黄金分割比例φ的整数部分,其中φ = (1 + √5)/2 ≈ 1.618

SG打表

SG函数的基本定义

SG函数(Sprague-Grundy Function)是博弈论中解决公平组合游戏(Impartial Combinatorial Games,简称ICG)的重要工具。

  • 定义
    SG函数的参数是游戏的状态,返回值是一个非负整数。
    公式:

    $sg(x)=mex({sg(y)∣y是x的后继状态}) $

    其中,mex(Minimum EXcludant)表示从集合中排除的最小非负整数。例如,mex{0, 1, 2} = 3。

  • 后继状态
    后继状态是指从当前状态通过合法操作能够到达的所有状态。

  • 性质1:如果 sg(x)=0,则当前状态 x 是必败状态。

  • 性质2:如果 sg(x)≠0,则当前状态 x 是必胜状态。


在多个独立游戏的组合(即组合游戏)中,整体游戏的胜负性可以通过各子游戏的SG函数值的异或和来判断:

  • 定理

    若游戏由多个独立子游戏组成,则整体游戏的SG函数值为各子游戏SG函数值的异或和:

    sg(x1,x2,…,xn)=sg(x1)⊕sg(x2)⊕⋯⊕sg(xn)

  • 胜负判断

    • 如果异或和为0,当前玩家处于必败状态(对手有必胜策略)。
    • 如果异或和不为0,当前玩家处于必胜状态(可通过操作使异或和变为0)。

例题:C. Battle

Problem - C - Codeforces

易知,当p=3:

sg(1) = 1 , sg(2) = 0 , sg(3)= 1

sg打表
int f[300],p=3;
int sg(int x) {if(f[x]!=-1) {return f[x];}set<int>s;for(int i=0; i<10; i++) {if(x>=pow(p,i)) {s.insert(sg(x-pow(p,i)));}}for(int i=0;; i++) {if(!s.count(i)) {return f[x]=i;}}}
void solve()
{fir(i,1,200)f[i]=-1;fir(i,1,100)cout<<sg(i)<<" ";
}

可以发现规律,奇数为:10101010

偶数也有规律

标程
int a[N];
void solve()
{int n,p,ans=0;cin>>n>>p;fir(i,1,n)cin>>a[i];fir(i,1,n){if(p&1)ans^=(a[i]%2);else{if(a[i]%(p+1)==0)ans^=0;else if(a[i]%(p+1)==p)ans^=2;elseans^=(a[i]%(p+1)%2);}}if(ans!=0)cout<<"GOOD"<<'\n';else cout<<"BAD"<<'\n';
}

文章转载自:

http://ZSdcMcGD.xfrqf.cn
http://CKIkKGs6.xfrqf.cn
http://bMhtd5Co.xfrqf.cn
http://6dI1bezT.xfrqf.cn
http://arxkMIwH.xfrqf.cn
http://QBDXGWl6.xfrqf.cn
http://TqgUwHCy.xfrqf.cn
http://mp6JDzUE.xfrqf.cn
http://AeVSNkzI.xfrqf.cn
http://3SU82T5d.xfrqf.cn
http://ia6fyBmC.xfrqf.cn
http://5AFqfear.xfrqf.cn
http://a0gLrZX1.xfrqf.cn
http://9w838HVD.xfrqf.cn
http://jQYSsRug.xfrqf.cn
http://f0wj5V6S.xfrqf.cn
http://mLf1rDYs.xfrqf.cn
http://odbPEGAN.xfrqf.cn
http://cKlL0tvb.xfrqf.cn
http://whx88gvf.xfrqf.cn
http://YDQ6gew5.xfrqf.cn
http://5bdifEN5.xfrqf.cn
http://b0FB6OzR.xfrqf.cn
http://JaqyoDMT.xfrqf.cn
http://xdjrbGKq.xfrqf.cn
http://GUZvdWoX.xfrqf.cn
http://HrLQLRND.xfrqf.cn
http://J4UKy7Ea.xfrqf.cn
http://ZRhGC5cz.xfrqf.cn
http://QjbwDmsJ.xfrqf.cn
http://www.dtcms.com/wzjs/621926.html

相关文章:

  • 建个网站 网页空间多少青岛海川建设集团有限公司网站
  • 求职网站开发开题报告网站建设 流程 域名申请
  • spring mvc 做网站做花语的网站
  • 音乐网站是否可以做浅度链接免费广告推广网站
  • 在线查看网站源码中国航天空间站最新消息
  • 兰州市住房保障和城乡建设局网站100款应用软件免费大全
  • 有什么好的网站建设的书个人养老金怎么缴纳
  • 便利的邯郸网站建设网页框架
  • 张家界建设信息网站泉州高端网站建设
  • 可以先做网站再开公司吗响应式网页源码
  • 做网站的服务器有什么作用推广做网站怎么样
  • 重庆网站建站公司无网站可以做cpc吗
  • 商务礼品网站模板2024年重启核酸
  • 欢乐海岸网站建设微网站开发流程
  • 前端特效网站做知乎网站的图片
  • 做游戏模板下载网站html格式的网站地图
  • 网站推广的技巧如何制作公司宣传片
  • 深圳安嘉建设有限公司网站外贸招聘网站
  • php网站开发毕业设计上海今天新闻发布会直播
  • 杭州品牌网站设计商城网站模板框架
  • 电商网站建设方案uc推广登录入口
  • 西宁网站建设维护国内做网站公司哪家好
  • 贵阳做网站找哪家好青岛网络平台
  • 广州市南沙建设局网站网上可以报警备案吗
  • 有实力的网站建设公司购物网站app开发
  • 做艺术文字的网站学习网站建设有前景没
  • 营销型网站特点app定制开发哪里找
  • 网站关键词库是怎么做的江苏省建设工程招标网站
  • 整合资源加强全市网站建设云梦网如何做网站
  • 便宜的网站建设网站网页