当前位置: 首页 > wzjs >正文

温州建设局老网站2022小说排行榜百度风云榜

温州建设局老网站,2022小说排行榜百度风云榜,style wordpress,羊肉口报关做网站前言:本博客汇总当前AI生成图像检测领域用到的数据集及相关链接。 ⚠️:除标注「未公开」数据集,其余数据集均已开源。 目录 2020202220232024 2020 CNNSpot https://github.com/peterwang512/CNNDetection Testset: The zip file contains …

前言:本博客汇总当前AI生成图像检测领域用到的数据集及相关链接。
⚠️:除标注「未公开」数据集,其余数据集均已开源。

目录

  • 2020
  • 2022
  • 2023
  • 2024

2020

  • CNNSpot
    https://github.com/peterwang512/CNNDetection
    Testset: The zip file contains images from 13 CNN-based synthesis algorithms, including the 12 testsets from the paper and images downloaded from whichfaceisreal.com. Images from each algorithm are stored in a separate folder. In each category, real images are in the 0_real folder, and synthetic images are in the 1_fake folder.
    Note: ProGAN, StyleGAN, StyleGAN2, CycleGAN testset contains multiple classes, which are stored in separate subdirectories.
    Training set: The training set used in the paper can be downloaded here (Try alternative links 1,2 if the previous link does not work). All images are from LSUN or generated by ProGAN, and they are separated in 20 object categories. Similarly, in each category, real images are in the 0_real folder, and synthetic images are in the 1_fake folder.
    Validation set: The validation set consists of held-out ProGAN real and fake images, and can be downloaded here. The directory structure is identical to that of the training set.
    在这里插入图片描述

2022

  • IEEE VIP Cup(2022 IEEE Video and Image Processing Cup | Synthetic Image Detection Challenge)
    https://grip-unina.github.io/vipcup2022/

  • SAC
    https://github.com/JD-P/simulacra-aesthetic-captions
    数据集中图像命名,包含生成所需的提示词,如:0_An_artwork_of_a_broken_wine_bottle_in_the_medium_of_dry_pigments_1.png43044_…png
    此外,该数据集也被用于美学质量评价。


2023

  • DiffusionForensics
    https://github.com/ZhendongWang6/DIRE
    在这里插入图片描述

  • DMimageDetection
    https://github.com/grip-unina/DMimageDetection/tree/main/training_code
    https://luminohope.org/pub/publication/arxiv_diffusion_detection_2022/

  • GenImage
    https://github.com/GenImage-Dataset/GenImage
    We employ eight generative models for image generation, namely BigGAN [2], GLIDE [21], VQDM [8], Stable Diffusion V1.4 [25], Stable Diffusion V1.5 [25], ADM [5], Midjourney [20], and Wukong [35].
    在这里插入图片描述

  • Fake2M
    https://arxiv.org/pdf/2304.13023
    We constructed 3 training fake datasets with about 2M images, named Fake2M, and 11 validation fake datasets with about 257K images using different latest modern generative models, which contain the SOTA Diffusion models (Stable Diffusion [46], IF [4]), the SOTA GAN model (StyleGAN3 [31]), the SOTA autoregressive model (CogView2 [19]), and the SOTA generative model (Midjounrey [6]), as shown in Tab. 2. We describe the details of our datasets in the following subsections.
    在这里插入图片描述

  • TWIGMA
    https://yiqunchen.github.io/TWIGMA/index.html#dataset
    在这里插入图片描述

  • ArtiFact
    https://github.com/awsaf49/artifact
    To include a diverse collection of real images from multiple categories, including Human/Human Faces, Animal/Animal Faces, Places, Vehicles, Art, and many other real-life objects, the proposed dataset utilizes 8 sources [7], [14]–[16] that are carefully chosen. Additionally, to inject diversity in terms of generators, the proposed dataset synthesizes images from 25 distinct methods [7]–[9], [14]–[24]. Specifically, it includes 13 GANs, 7 Diffusion, and 5 other miscellaneous generators. On the other hand, in terms of syntheticity, there are 20 fully manipulating and 5 partially manipulating generators, thus providing a broad spectrum of diversity in terms of generators used. The distribution of real and fake data with different sources is shown in Fig.1 and Fig.2, respectively. The dataset contains a total of 2,496,738 images, comprising 964,989 real images and 1,531,749 fake images. The most frequently occurring categories in the dataset are Human/Human Faces, Animal/Animal Faces, Vehicles, Places, and Art.

13GANs: BigGAN, CycleGAN, Denoising Diffusion GAN, Diffusion GAN, FaceSynthetics, GANformer, GauGAN, ProGAN, ProjectedGAN, StarGAN, StyleGAN1, StyleGAN2, StyleGAN3
7DMs: DDPM, Glide, LaMa, Latent Diffusion, Stable Diffusion, Taming Transformer, VQDiffusion
5 Others: CIPS, Generative Inpainting, MAT, Palette, SFHQ
在这里插入图片描述

  • Synthbuster
    https://github.com/qbammey/polardiffshield
    在这里插入图片描述

  • UniversarialFakeDetect
    https://github.com/WisconsinAIVision/UniversalFakeDetect
    11GANs + 7 DMs + 1 其他

  • DiffusionDB
    https://github.com/poloclub/diffusiondb
    We construct DIFFUSIONDB (Fig. 2) by scraping user-generated images from the official Stable Diffusion Discord server. We choose Stable Diffusion as it is currently the only open-source large text-to-image generative model, and all generated images have a CC0 1.0 license that allows uses for any purpose

  • CiFAKE
    https://github.com/jordan-bird/CIFAKE-Real-and-AI-Generated-Synthetic-Images
    CIFAKE is a dataset that contains 60,000 synthetically-generated images and 60,000 real images (collected from CIFAR-10). For the FAKE images, we generated the equivalent of CIFAR-10 with Stable Diffusion version 1.4

  • LASTED
    https://github.com/HighwayWu/LASTED
    训练集生成模型:ProGAN,Lexica(Stable Diffusion)
    测试集:DreamBooth, Midjourney, NightCafe, StalbeAI, YiJian(蚁鉴)

  • DDDB 未公开
    https://arxiv.org/abs/2302.14475
    在这里插入图片描述

  • DeepArt 未公开
    https://export.arxiv.org/pdf/2312.10407
    在这里插入图片描述

  • DEFAKE 未公开
    https://github.com/zeyangsha/De-Fake
    20k real image for training + 10k real images for testing
    在这里插入图片描述


2024

  • COCOFake
    https://github.com/aimagelab/COCOFake
    COCOFake, containing about 1.2 million images generated from the original COCO image–caption pairs using two recent text-to-image diffusion models, namely Stable Diffusion v1.4 and v2.0.
    在这里插入图片描述
  • FOSID
    https://github.com/mever-team/fosid
    https://zenodo.org/records/13648239
    在这里插入图片描述
  • D^3
    https://aimagelab.ing.unimore.it/imagelab/page.asp?IdPage=57
    The Diffusion-generated Deepfake Detection (D3) Dataset is a comprehensive collection designed for large-scale deepfake detection. It includes 9.2 million generated images, created using four state-of-the-art diffusion model generators. Each image is generated based on realistic textual descriptions from the LAION-400M dataset.

We generate a comprehensive dataset that focuses on images generated by diffusion models and encompasses a collection of 9.2 million images produced by using four different generators.

Generators: Stable Diffusion 1.4, Stable Diffusion 2.1, Stable Diffusion XL, and DeepFloyd IF

Consequently, we generate and release the Diffusion-generated Deepfake Detection (D3 ) dataset containing 2.3 million records, each composed of a real image coming from LAION-400M [44] dataset and images from four generators, for a total of 9.2 million generated images. To verify the generation capabilities of deepfake detection methods to unseen generators, we also collect a challenging test set composed of 4.8k real images, each paired with 12 fake images generated by as many diffusion-based generators.

With the aim of increasing the variance of the dataset, images have been generated with different aspect ratios, i.e. 256x256, 512x512, 640×480, and 640×360. Moreover, to mimic the distribution of real images, we also employ a variety of encoding and compression methods (BMP, GIF, JPEG, TIFF, PNG). In particular, we closely follow the distribution of encoding methods of LAION itself, therefore favoring the presence of JPEG-encoded images.
在这里插入图片描述

  • ImagiNet
    https://github.com/delyan-boychev/imaginet
    https://huggingface.co/datasets/delyanboychev/imaginet
    To support the development of defensive methods, we introduce ImagiNet, a high-resolution and balanced dataset for synthetic image detection, designed to mitigate potential biases in existing resources. It contains 200k examples, spanning four content categories: photos, paintings, faces, and uncategorized. Synthetic images are produced with open-source and proprietary generators, whereas real counterparts of the same content type are collected from public datasets.
    在这里插入图片描述
    在这里插入图片描述

  • AntifakePrompt
    https://github.com/nctu-eva-lab/AntifakePrompt
    We conduct full-spectrum experiments on datasets from a diversity of 3 held-in and 20 held-out generative models, covering modern text-to-image generation, image editing and adversarial image attacks.
    Real datasets. We use Microsoft COCO (COCO) (Lin et al. 2014) dataset and Flickr30k (Young et al. 2014) dataset. In our work, we selected 90K images, with shorter sides greater than 224, from COCO dataset for the real images in the training dataset. Moreover, to assess the generalizability of our method over various real images, we additionally select 3K images from Flickr30k dataset to form a held-out testing dataset, adhering to the same criterion of image size. (93k)
    Fake image for training: 150k;for testing:3k*21 = 63k
    在这里插入图片描述

  • FakeBench
    https://arxiv.org/abs/2404.13306
    Regarding the genuine images, we sample 3,000 images from ImageNet [76] and DIV2K dataset [77].
    在这里插入图片描述
    在这里插入图片描述

  • COCOXGEN
    https://github.com/heikeadel/cocoxgen
    COCOXGEN(COCO Extended With Generated Images), which consists of real photos from the COCO dataset as well as images generated with SDXL and Fooocus using prompts of two standardized lengths.
    在这里插入图片描述

  • WildRF
    https://github.com/barcavia/RealTime-DeepfakeDetection-in-the-RealWorld
    We propose to improve deepfake evaluation and align it with real-world settings by introducing WildRF, a realistic benchmark consisting of images sourced from popular social platforms. Specifically, we manually collected real images and fake images using keywords and hashtags associated with the suitable content. Our protocol is to train on one platform (e.g., Reddit) and test the detector on real and fake images from other unseen platforms (e.g., Twitter and Facebook).
    在这里插入图片描述

  • WildFake
    https://arxiv.org/pdf/2402.11843
    在这里插入图片描述
    在这里插入图片描述

  • LSUNDB
    https://github.com/jonasricker/diffusion-model-deepfake-detection
    The main dataset used in this work is hosted on Zenodo. In total, the dataset contains 50k samples (256x256) for each of the following generators trained on LSUN Bedroom, divided into train, validation, and test set (39k/1k/10k).

  • DIF
    https://sergo2020.github.io/DIF/
    在这里插入图片描述

http://www.dtcms.com/wzjs/51259.html

相关文章:

  • 网站怎样做才能有点击率推广恶意点击软件怎样使用
  • drupal网站建设网站收录一键提交
  • 崇左做网站公司关键词大全
  • 南京网站建设咨询百度seo怎么做网站内容优化
  • 东莞h5网站建设上海网络推广服务
  • 怎么做自己的刷赞网站百度关键词刷排名软件
  • 做招聘网站需要做什么公司沈阳网络优化培训
  • 网络营销比较常用的营销模式班级优化大师app
  • 免费网站如何注册如何推广app让别人注册
  • 布谷海南网站建设广告营销方式有哪几种
  • wordpress 文章回收站搜索引擎优化seo价位
  • 做更好的自己 网站今日新闻联播
  • 巴南区网站建设软文新闻发稿平台
  • 网站推广入口免费网站怎么申请
  • 重庆技术支持 网站建设公司seo交流论坛seo顾问
  • 旅游电子商务网站建设情况天津搜索引擎seo
  • 网站上传后没有后台什么软件可以刷网站排名
  • 提升网站长尾关键词排厦门人才网唯一官网登录
  • 创意设计产业网络公司优化关键词
  • 济南自助建站app推广方式
  • 弹幕做的视频网站免费发布活动的平台
  • 分类网站模板上海网站推广广告
  • 客户要做网站建设话术海南百度推广代理商
  • 广州网站建设新锐推广怎么推
  • 青海省教育厅门户网站学籍查询腾讯企点官网
  • 办公司流程和费用南京seo招聘
  • 动态网站 模板软文发稿
  • 网站建设 风水模板南京网站建设
  • 室内设计师证搜索引擎优化的办法有哪些
  • ps做网页怎么在网站上打开百度 营销推广怎么收费