当前位置: 首页 > wzjs >正文

弹幕做的视频网站免费发布活动的平台

弹幕做的视频网站,免费发布活动的平台,虚拟云主机wordpress,相亲网站的女人 做直播的深入理解Diffusers: 从基础到Stable Diffusion Diffusers是一个功能强大且灵活的扩散模型工具箱,它让构建和部署扩散系统变得简单直观。本文将带你深入了解Diffusers的核心组件,并通过实例展示如何从零构建扩散系统。 核心组件 Diffusers工具箱的核心是模型(Model)和调度器(S…

深入理解Diffusers: 从基础到Stable Diffusion

在这里插入图片描述

Diffusers是一个功能强大且灵活的扩散模型工具箱,它让构建和部署扩散系统变得简单直观。本文将带你深入了解Diffusers的核心组件,并通过实例展示如何从零构建扩散系统。

核心组件

Diffusers工具箱的核心是模型(Model)和调度器(Scheduler):

  • 模型: 负责预测噪声残差
  • 调度器: 负责管理去噪过程
  • Pipeline: 将模型和调度器组合在一起,提供便捷的推理接口

从基础Pipeline开始

让我们先看一个简单的例子 - DDPM Pipeline:

from diffusers import DDPMPipelineddpm = DDPMPipeline.from_pretrained("google/ddpm-cat-256").to("cuda")
image = ddpm(num_inference_steps=25).images[0]
image.save("ddpm_generated_cat.png")

这个Pipeline内部包含了:

  • UNet2DModel: 用于预测噪声残差
  • DDPMScheduler: 用于管理去噪过程
    在这里插入图片描述

拆解Pipeline

让我们看看如何手动构建这个系统:

  1. 加载模型和调度器:
from diffusers import DDPMScheduler, UNet2DModelscheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256")
model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda")
  1. 设置时间步:
scheduler.set_timesteps(50)
  1. 创建随机噪声:
import torch
sample_size = model.config.sample_size
noise = torch.randn((1, 3, sample_size, sample_size), device="cuda")
  1. 实现去噪循环:
input = noise
for t in scheduler.timesteps:with torch.no_grad():noisy_residual = model(input, t).sampleprevious_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sampleinput = previous_noisy_sample# 将生成的图像保存
image = (input / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()[0]
image = (image * 255).round().astype("uint8")
image = Image.fromarray(image)
image.save("manual_ddpm_generated_cat.png")

生成的图片:
在这里插入图片描述

Stable Diffusion Pipeline

Stable Diffusion是一个更复杂的文本到图像潜空间扩散模型。它包含以下组件:

  1. VAE (变分自编码器)
  2. CLIP文本编码器
  3. UNet条件模型
  4. 调度器

让我们看看如何构建Stable Diffusion系统:

  1. 加载所有组件:
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, UNet2DConditionModel, UniPCMultistepSchedulertorch_device = "cuda" if torch.cuda.is_available() else "cpu"
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae").to(torch_device)
tokenizer = CLIPTokenizer.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="text_encoder").to(torch_device)
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet").to(torch_device)
scheduler = UniPCMultistepScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")
  1. 设置参数和生成文本嵌入:
prompt = ["a photograph of an astronaut riding a horse"]
batch_size = 1
height = 512
width = 512
guidance_scale = 7.5
generator = torch.manual_seed(0)text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt")
text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
  1. 创建潜空间噪声:
latents = torch.randn((batch_size, unet.config.in_channels, height // 8, width // 8),generator=generator,device=torch_device,
)
  1. 实现去噪循环:
scheduler.set_timesteps(50)for t in scheduler.timesteps:latent_model_input = torch.cat([latents] * 2)latent_model_input = scheduler.scale_model_input(latent_model_input, timestep=t)with torch.no_grad():noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).samplenoise_pred_uncond, noise_pred_text = noise_pred.chunk(2)noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)latents = scheduler.step(noise_pred, t, latents).prev_sample
  1. 解码和保存图像:
latents = 1 / 0.18215 * latents
with torch.no_grad():image = vae.decode(latents).sampleimage = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()[0]
image = (image * 255).round().astype("uint8")
image = Image.fromarray(image)
image.save("stable_diffusion_generated.png")

在这里插入图片描述

总结

Diffusers的设计理念是让构建扩散系统变得简单直观。通过理解模型和调度器的工作原理,你可以:

  1. 构建自己的扩散系统
  2. 自定义和优化现有Pipeline
  3. 尝试不同的模型和调度器组合

无论你是想构建简单的图像生成系统,还是复杂的文本到图像模型,Diffusers都能为你提供所需的工具和灵活性。

下一步

  • 探索Diffusers库中的其他Pipeline
  • 尝试构建自己的Pipeline
  • 实验不同的模型和调度器组合
  • 优化推理性能

Diffusers正在不断发展,欢迎加入社区,一起推动扩散模型的发展!

http://www.dtcms.com/wzjs/51236.html

相关文章:

  • 分类网站模板上海网站推广广告
  • 客户要做网站建设话术海南百度推广代理商
  • 广州网站建设新锐推广怎么推
  • 青海省教育厅门户网站学籍查询腾讯企点官网
  • 办公司流程和费用南京seo招聘
  • 动态网站 模板软文发稿
  • 网站建设 风水模板南京网站建设
  • 室内设计师证搜索引擎优化的办法有哪些
  • ps做网页怎么在网站上打开百度 营销推广怎么收费
  • 新时代推进政府网站集约化建设jsurl中文转码
  • 做的比较好的企业网站十大网站管理系统
  • 长沙需要做网站的企业高中同步测控优化设计答案
  • 网站弄论坛形式怎么做百度搜索风云榜官网
  • 莆田网站建设咨询百度网盘官方
  • 做电商需要投入多少钱seo优化运营
  • 响应式网站头部seo是指什么职位
  • 一个服务器可以做两个网站怎么写软文
  • 网站建设模板一次收费谈谈你对互联网营销的认识
  • 企业网站建设及推广研究模板下载网站
  • 二手房网站开发重庆seo网站推广费用
  • 网站建设流程报价9 1短视频安装
  • 愿意合作做游戏的网站平台百度开户渠道
  • 宝洁公司网站做的怎么样广东短视频seo营销
  • 同一人做多个主体网站负责人品牌推广渠道有哪些
  • 角门网站建设郑州网站建设制作公司
  • 做一个个人主页的网站怎么做可以推广网站
  • 做网站IP旧版优化大师
  • 用什么做网站比较好百度竞价排名怎么靠前
  • 冠辰网站建设关键词优化公司推荐
  • 南宁建站官网友情链接查询友情链接检测