当前位置: 首页 > wzjs >正文

建立一个公司网站大约多少钱磁力搜索引擎

建立一个公司网站大约多少钱,磁力搜索引擎,WordPress请求跳转564错误,少女大人免费观看高清电视剧韩剧目录 一.Pipline与工具栈 二.硬件设备概况 三.GPU视频编解码框架 四.VPI编译使用实例 五. jetson_multimedia_api编译使用实例 一.Pipline与工具栈 二.硬件设备概况 三.GPU视频编解码框架 jetson设备目前不支持VPF框架,关于VPF的使用我在下节PC段使用X86进行安…

目录

一.Pipline与工具栈

二.硬件设备概况

三.GPU视频编解码框架

四.VPI编译使用实例

五. jetson_multimedia_api编译使用实例

一.Pipline与工具栈

二.硬件设备概况

三.GPU视频编解码框架

  1. jetson设备目前不支持VPF框架,关于VPF的使用我在下节PC段使用X86进行安装与演示
  2. jetson目前支持的GPU编解码框架为VPI和jetson_multimedia_api
    #1.主机端
    agx@ubuntu:~$ ls /usr/src/jetson_multimedia_api/
    argus  data  include  LEGAL  LICENSE  Makefile  README  samples  tools
    agx@ubuntu:~$ ls /opt/
    containerd/  genymobile/  nvidia/      ota_package/ todesk/
    agx@ubuntu:~$ ls /opt/nvidia/vpi2/
    bin  doc  etc  include  lib  lib64  samples  share#2.docker端
    agx@ubuntu:~$ docker images
    REPOSITORY                   TAG                  IMAGE ID       CREATED       SIZE
    nvcr.io/nvidia/l4t-pytorch   r35.2.1-pth2.0-py3   853b58c1dce6   2 years ago   11.7GB
    agx@ubuntu:~$ docker exec  -it nvpy bash
    root@7666a2ca87d3:/# ls /usr/src/jetson_multimedia_api/
    LEGAL  LICENSE  Makefile  README  argus  data  include  samples  tools
    root@7666a2ca87d3:/# ls /opt/nvidia/vpi2/
    bin  doc  etc  include  lib  lib64  samples  share
    

四.VPI编译使用实例

        1.运行结果

root@7666a2ca87d3:/opt/nvidia/vpi2# cd s
samples/ share/   
root@7666a2ca87d3:/opt/nvidia/vpi2# cd samples/
01-convolve_2d/           03-harris_corners/        05-benchmark/             07-fft/                   09-tnr/                   11-fisheye/               13-optflow_dense/         15-image_view/            17-template_matching/     assets/                   
02-stereo_disparity/      04-rescale/               06-klt_tracker/           08-cross_aarch64_l4t/     10-perspwarp/             12-optflow_lk/            14-background_subtractor/ 16-vpi_pytorch/           18-orb_feature_detector/  tutorial_blur/            
root@7666a2ca87d3:/opt/nvidia/vpi2# cd samples/01-convolve_2d/
root@7666a2ca87d3:/opt/nvidia/vpi2/samples/01-convolve_2d# python3 main.py --backend=cuda --input "/opt/nvidia/vpi2/share/backgrounds/NVIDIA_icon.png"
root@7666a2ca87d3:/opt/nvidia/vpi2/samples/01-convolve_2d# 

        2.源码 

import sys
import vpi
import numpy as np
from PIL import Image
from argparse import ArgumentParser# Parse command line arguments
parser = ArgumentParser()
parser.add_argument('--backend', choices=['cpu','cuda','pva'],default="cuda",help='Backend to be used for processing')parser.add_argument('--input',default="/opt/nvidia/vpi2/share/backgrounds/NVIDIA_icon.png",help='Image to be used as input')args = parser.parse_args();if args.backend == 'cpu':backend = vpi.Backend.CPU
elif args.backend == 'cuda':backend = vpi.Backend.CUDA
else:assert args.backend == 'pva'backend = vpi.Backend.PVA# Load input into a vpi.Image
try:input = vpi.asimage(np.asarray(Image.open(args.input)))
except IOError:sys.exit("Input file not found")
except:sys.exit("Error with input file")# Convert it to grayscale
input = input.convert(vpi.Format.U8, backend=vpi.Backend.CUDA)# Define a simple edge detection kernel
kernel = [[ 1, 0, -1],[ 0, 0,  0],[-1, 0, 1]]# Using the chosen backend,
with backend:# Run input through the convolution filteroutput = input.convolution(kernel, border=vpi.Border.ZERO)# Save result to disk
Image.fromarray(output.cpu()).save('edges_python'+str(sys.version_info[0])+'_'+args.backend+'.png')

         3.结果展示(上面用的是一个滤波)

五. jetson_multimedia_api编译使用实例

        1.cuda h264编码(bug警告,能编译通过·但是无法OSD,后续两个实验直接在jetson-dektop上面实验的,就行了)

root@ubuntu:/usr/src/jetson_multimedia_api/samples/03_video_cuda_enc# make clean
root@ubuntu:/usr/src/jetson_multimedia_api/samples/03_video_cuda_enc# make
Compiling: video_cuda_enc_csvparser.cpp
Compiling: video_cuda_enc_main.cpp
make[1]: 进入目录“/usr/src/jetson_multimedia_api/samples/common/classes”
Compiling: NvElementProfiler.cpp
Compiling: NvElement.cpp
Compiling: NvApplicationProfiler.cpp
Compiling: NvVideoDecoder.cpp
Compiling: NvJpegEncoder.cpp
Compiling: NvBuffer.cpp
Compiling: NvLogging.cpp
Compiling: NvEglRenderer.cpp
Compiling: NvUtils.cpp
Compiling: NvDrmRenderer.cpp
Compiling: NvJpegDecoder.cpp
Compiling: NvVideoEncoder.cpp
Compiling: NvV4l2ElementPlane.cpp
Compiling: NvBufSurface.cpp
Compiling: NvV4l2Element.cpp
make[1]: 离开目录“/usr/src/jetson_multimedia_api/samples/common/classes”
make[1]: 进入目录“/usr/src/jetson_multimedia_api/samples/common/algorithm/cuda”
Compiling: NvAnalysis.cu
Compiling: NvCudaProc.cpp
make[1]: 离开目录“/usr/src/jetson_multimedia_api/samples/common/algorithm/cuda”
Linking: video_cuda_enc
root@ubuntu:/usr/src/jetson_multimedia_api/samples/03_video_cuda_enc# ./video_cuda_enc ../../data/Video/sample_outdoor_car_1080p_10fps.yuv 1920 1080 H264 test.h264
段错误 (核心已转储)

        2. cuda h264解码

root@ubuntu:/usr/src/jetson_multimedia_api/samples/02_video_dec_cuda# ./video_dec_cuda ../../data/Video/sample_outdoor_car_1080p_10fps.h264 H264
Opening in BLOCKING MODE 
NvMMLiteOpen : Block : BlockType = 261 
NVMEDIA: Reading vendor.tegra.display-size : status: 6 
NvMMLiteBlockCreate : Block : BlockType = 261 
Starting decoder capture loop thread
Input file read complete
Video Resolution: 1920x1080
[INFO] (NvEglRenderer.cpp:110) <renderer0> Setting Screen width 1920 height 1080
Query and set capture successful
Exiting decoder capture loop thread
App run was successful

        3.cuda h264解码+tensorrt目标检测:

        GPU算法检测与结果缓存

root@ubuntu:/usr/src/jetson_multimedia_api/samples/02_video_dec_cuda# cd ../04_video_dec_trt/
root@ubuntu:/usr/src/jetson_multimedia_api/samples/04_video_dec_trt# ./video_dec_trt 2 ../../data/Video/sample_outdoor_car_1080p_10fps.h264  ../../data/Video/sample_outdoor_car_1080p_10fps.h264 H264 --trt-onnxmodel  ../../data/Model/resnet10/resnet10_dynamic_batch.onnx --trt-mode 0
set onnx modefile: ../../data/Model/resnet10/resnet10_dynamic_batch.onnx
Using cached TRT model
Deserialization required 13048 microseconds.
Total per-runner device persistent memory is 5632
Total per-runner host persistent memory is 45440
Allocated activation device memory of size 22138880
Opening in BLOCKING MODE 
NvMMLiteOpen : Block : BlockType = 261 
NVMEDIA: Reading vendor.tegra.display-size : status: 6 
NvMMLiteBlockCreate : Block : BlockType = 261 
Starting decoder capture loop thread
Input file read complete
Video Resolution: 1920x1080
Opening in BLOCKING MODE 
NvMMLiteOpen : Block : BlockType = 261 
NVMEDIA: Reading vendor.tegra.display-size : status: 6 
NvMMLiteBlockCreate : Block : BlockType = 261 
Resolution change successful
Starting decoder capture loop thread
Input file read complete
Video Resolution: 1920x1080
Resolution change successful
Time elapsed:1 ms per frame in past 100 frames
Time elapsed:1 ms per frame in past 100 frames
Time elapsed:1 ms per frame in past 100 frames
Time elapsed:1 ms per frame in past 100 frames
Time elapsed:1 ms per frame in past 100 frames
Time elapsed:1 ms per frame in past 100 frames

         CUDA-H264视频解码+OSD

root@ubuntu:/usr/src/jetson_multimedia_api/samples/02_video_dec_cuda# ./video_dec_cuda ../../data/Video/sample_outdoor_car_1080p_10fps.h264 H264 --bbox-file result0.txt 
ctx.osd_file_path:result0.txt
Opening in BLOCKING MODE 
NvMMLiteOpen : Block : BlockType = 261 
NVMEDIA: Reading vendor.tegra.display-size : status: 6 
NvMMLiteBlockCreate : Block : BlockType = 261 
Starting decoder capture loop thread
Input file read complete
Video Resolution: 1920x1080
[INFO] (NvEglRenderer.cpp:110) <renderer0> Setting Screen width 1920 height 1080
Query and set capture successful
Exiting decoder capture loop thread
App run was successful
root@ubuntu:/usr/src/jetson_multimedia_api/samples/02_video_dec_cuda# ls
Makefile  resuilt.txt  result0.txt  result1.txt  result.txt  videodec_csvparser.cpp  videodec_csvparser.o  video_dec_cuda  videodec.h  videodec_main.cpp  videodec_main.o
root@ubuntu:/usr/src/jetson_multimedia_api/samples/02_video_dec_cuda# ./video_dec_cuda ../../data/Video/sample_outdoor_car_1080p_10fps.h264 H264
Opening in BLOCKING MODE 
NvMMLiteOpen : Block : BlockType = 261 
NVMEDIA: Reading vendor.tegra.display-size : status: 6 
NvMMLiteBlockCreate : Block : BlockType = 261 
Starting decoder capture loop thread
Input file read complete
Video Resolution: 1920x1080
[INFO] (NvEglRenderer.cpp:110) <renderer0> Setting Screen width 1920 height 1080
Query and set capture successful

http://www.dtcms.com/wzjs/508183.html

相关文章:

  • 郑州全网营销推广自己怎么优化网站
  • 优惠券的网站怎么做的营销平台有哪些
  • 网站建设行业分析seo优化查询
  • abc网站建设是什么意思百度认证中心
  • 小程序怎么推广引流北京推广优化公司
  • 局 网站建设方案大连seo顾问
  • 用wordpress做网站3小时百度收录新站方法
  • 哪个网站能买到做披萨的芝士正宗免费个人网站平台
  • 网站短片怎么做百度搜索下载app
  • wordpress做网站厦门人才网个人版
  • 淘宝做女鞋在哪个网站找货德阳网站seo
  • 彩票站自己做网站吗温岭网络推广
  • 网站建设后台操作步骤线上广告接单平台
  • APP和网站是一样吗谷歌浏览器下载手机版最新版
  • 中国住房和城乡建设部网站首页百度app官方下载
  • 英文公司网站制作免费推广广告链接
  • 专门做稀有产品的网站360网站推广怎么做
  • 网站建立的seo研究中心超逸seo
  • 离我最近的广告牌制作优化seo搜索
  • 凡科网站做的作品如何发布常用的网络营销平台有哪些
  • 云主机网站源码百度快照和广告的区别
  • 西安做网站公司哪家行营销推广主要包括
  • 淮南网站推广云搜索神器
  • 建设部网站举报宁波网站推广
  • 专业网站搭建运营网站点击快速排名
  • 锤子 网站 模版青岛网站关键词优化公司
  • 深圳建站公司设计深业集团google网站入口
  • 你做的网站可视区域多少网络服务提供商
  • 网站给篡改了要怎么做如何自己创建网站
  • 做公司门户网站的重点外链兔