当前位置: 首页 > wzjs >正文

建设银行网站设置密码神马seo教程

建设银行网站设置密码,神马seo教程,常用来做网站的首页,易企秀微网站如何做文字链接有时我们希望在调用代理时能够对其进行配置。这包括配置使用哪个语言模型(LLM)等例子。下面我们将通过一个示例来详细介绍如何进行这样的配置。 在介绍 configurable 之前我们先介绍一下 Langchain 的 RunnableConfig。RunnableConfig是一个配置对象&…

有时我们希望在调用代理时能够对其进行配置。这包括配置使用哪个语言模型(LLM)等例子。下面我们将通过一个示例来详细介绍如何进行这样的配置。
在介绍 configurable 之前我们先介绍一下 Langchain 的 RunnableConfig。RunnableConfig是一个配置对象,用于自定义运行链(Chain)、工具(Tool)或任何可运行组件的行为。它允许我们控制执行过程中的各种参数和行为,是LangChain统一接口的重要组成部分。
它的主要功能和属性包括:

  1. callbacks: 允许你注册回调函数,在执行过程中的不同阶段触发,用于日志记录、监控或调试。
  2. tags:为执行添加标签,便于追踪和分类。
  3. metadata: 添加元数据信息,可用于记录额外的上下文信息。
  4. run_name:为当前运行指定一个名称,在追踪和日志中使用。
  5. configurable: 允许你在运行时动态配置组件。 运行时为此Runnable或子Runnable上通过.configurable_fields()或.configurable_alternatives()方法之前设为可配置的属性提供的值。查看.output_schema()获取已设为可配置的属性的描述。
  6. max_concurrency: 控制并发执行的最大数量。
  7. recursion_limit: 设置递归调用的最大次数。如果未提供,则默认为25。
  8. run_id: 这是调用的追踪器运行的唯一标识符。如果未提供,将生成一个新的UUID。

定义图

首先我们先创建一个非常简单的图:

import operator
from typing import Annotated, Sequence
from typing_extensions import TypedDictfrom langchain_openai import ChatOpenAI
from langchain_core.messages import BaseMessage, HumanMessagefrom langgraph.graph import END, StateGraph, STARTmodel = ChatOpenAI(model_name="gpt-4o-mini")class AgentState(TypedDict):messages: Annotated[Sequence[BaseMessage], operator.add]def _call_model(state):# state["messages"]response = model.invoke(state["messages"])return {"messages": [response]}# Define a new graph
builder = StateGraph(AgentState)
builder.add_node("model", _call_model)
builder.add_edge(START, "model")
builder.add_edge("model", END)graph = builder.compile()from IPython.display import display, Image
display(Image(graph.get_graph().draw_mermaid_png()))

得到如下图
在这里插入图片描述

configurable

然后为了扩展这个例子以允许用户从多个语言模型(LLM)中进行选择,并通过配置传递这些信息,我们可以将配置信息放在一个名为 configurable 的 key 内。这种方式可以确保配置信息与输入数据分离,不作为状态的一部分进行跟踪。

from langchain_openai import ChatOpenAI
from typing import Optional
from langchain_core.runnables.config import RunnableConfigopenai_model = ChatOpenAI(model_name="gpt-3.5-turbo")models = {"openai_old": model,"openai": openai_model,
}def _call_model(state: AgentState, config: RunnableConfig):# Access the config through the configurable keymodel_name = config["configurable"].get("model", "openai_old")model = models[model_name]response = model.invoke(state["messages"])return {"messages": [response]}# Define a new graph
builder = StateGraph(AgentState)
builder.add_node("model", _call_model)
builder.add_edge(START, "model")
builder.add_edge("model", END)graph = builder.compile()from IPython.display import display, Image
display(Image(graph.get_graph().draw_mermaid_png()))

然后我们调用这个选择特定配置的图,

graph.invoke({"messages": [HumanMessage(content="hi")]})

得到结果

{'messages': [HumanMessage(content='hi', additional_kwargs={}, response_metadata={}),AIMessage(content='Hello! How can I assist you today?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 9, 'prompt_tokens': 8, 'total_tokens': 17, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 0, 'rejected_prediction_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_b705f0c291', 'finish_reason': 'stop', 'logprobs': None}, id='run-78fbb4d3-e64e-41dc-871f-fe08e3317f07-0', usage_metadata={'input_tokens': 8, 'output_tokens': 9, 'total_tokens': 17, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 0}})]}

我们可以通过传入配置来调用它,以使其使用不同的模型。

config = {"configurable": {"model": "openai"}}
graph.invoke({"messages": [HumanMessage(content="hi")]}, config=config)

得到下面结果

{'messages': [HumanMessage(content='hi', additional_kwargs={}, response_metadata={}),AIMessage(content='Hello! How can I assist you today?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 9, 'prompt_tokens': 8, 'total_tokens': 17, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_0165350fbb', 'finish_reason': 'stop', 'logprobs': None}, id='run-1fe66150-1579-4bba-b35f-06c3f66cd2d2-0', usage_metadata={'input_tokens': 8, 'output_tokens': 9, 'total_tokens': 17, 'input_token_details': {}, 'output_token_details': {}})]}

我们还可以调整图形以进行更多配置!例如系统消息。
首先我们可以定义一个配置模式(config schema)来指定图的配置选项,配置模式有助于指明在可配置字典(configurable dict)中有哪些字段可用。

from langchain_core.messages import SystemMessageclass ConfigSchema(TypedDict):model: Optional[str]system_message: Optional[str]def _call_model(state: AgentState, config: RunnableConfig):# Access the config through the configurable keymodel_name = config["configurable"].get("model", "openai_old")model = models[model_name]messages = state["messages"]if "system_message" in config["configurable"]:messages = [SystemMessage(content=config["configurable"]["system_message"])] + messagesresponse = model.invoke(messages)return {"messages": [response]}# 定义一个新的图 —— 注意我们在这里传入了配置模式,但这一步并不是必需的
workflow = StateGraph(AgentState, ConfigSchema)
workflow.add_node("model", _call_model)
workflow.add_edge(START, "model")
workflow.add_edge("model", END)graph = workflow.compile()

得到下面结果:

graph.invoke({"messages": [HumanMessage(content="hi")]})
{'messages': [HumanMessage(content='hi', additional_kwargs={}, response_metadata={}),AIMessage(content='Hello!', additional_kwargs={}, response_metadata={'id': 'msg_01VgCANVHr14PsHJSXyKkLVh', 'model': 'claude-2.1', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 10, 'output_tokens': 6}}, id='run-f8c5f18c-be58-4e44-9a4e-d43692d7eed1-0', usage_metadata={'input_tokens': 10, 'output_tokens': 6, 'total_tokens': 16})]}
config = {"configurable": {"system_message": "用韩语回答"}}
graph.invoke({"messages": [HumanMessage(content="您好")]}, config=config)
{'messages': [HumanMessage(content='您好', additional_kwargs={}, response_metadata={}),AIMessage(content='안녕하세요! 어떻게 도와드릴까요?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 10, 'prompt_tokens': 16, 'total_tokens': 26, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 0, 'rejected_prediction_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_ded0d14823', 'finish_reason': 'stop', 'logprobs': None}, id='run-1046d220-3a32-4792-9665-0a14528f9d53-0', usage_metadata={'input_tokens': 16, 'output_tokens': 10, 'total_tokens': 26, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 0}})]}
http://www.dtcms.com/wzjs/376600.html

相关文章:

  • 天津网站建设诺亚长沙靠谱seo优化
  • 茶叶电子商务网站建设的结论谷歌搜索引擎入口2023
  • 做网站优化的教程江苏网页设计
  • 甘肃做网站价格推广赚钱平台有哪些
  • 桂电做网站的毕设容易过嘛荥阳网站优化公司
  • 网站建设企业属于什么类型的公司交换友情链接的好处
  • 建行app怎么解除5000限额seo是怎么优化推广的
  • 什么网站上做任务赚钱有没有专门做策划的公司
  • 广州网络营销公司有哪些上海专业的seo公司
  • 海口网站建设加王道下拉中文搜索引擎有哪些
  • 国外专门做图像增强的网站今日新闻最新
  • 厦门b2b网站建设长沙seo优化排名
  • 自己电脑怎么做网站服务器吗网页设计制作网站素材
  • 做网站价位seo排名优化公司哪家好
  • 做调味品批发上哪个网站好seo免费培训
  • css网页设计用什么软件厦门seo排名收费
  • 东莞常平招聘网最新招聘信息seo排名优化工具推荐
  • 好搜360网站打开百度浏览器
  • 青岛手机网站制作网络优化工程师证书
  • 苏州园区两学一做网站seo案例视频教程
  • 网站建设与管理上海交通大学知道百度
  • 上饶网站建设3ao cc专业a今日最火的新闻
  • 融资网站建设重点seo公司 引擎
  • 西安装修行业网站建设搜索引擎优化的主要内容
  • 有哪些做特卖的网站seo培训网的优点是
  • 政务网站建设办法seo综合检测
  • web3d游戏网站开发免费seo软件推荐
  • 网站不备案可以做微信小程序么百度经验手机版
  • 6731官方网站下载免费找客源软件
  • vi视觉识别系统设计百度快速优化排名软件