当前位置: 首页 > wzjs >正文

保定建站模板搭建郑州关键词排名公司电话

保定建站模板搭建,郑州关键词排名公司电话,高端网站建设公司,毕业去设计公司还是企业Lecture1 绪论 写在前面: 科学、技术、工程、应用 科学:研究是什么、为什么的问题; 技术:研究怎么做的问题; 工程:怎么可以做的多快好省; 应用:实际的使用; 举例来…

Lecture1 绪论

写在前面:

科学、技术、工程、应用
    1. 科学:研究是什么、为什么的问题;

    2. 技术:研究怎么做的问题;

    3. 工程:怎么可以做的多快好省

    4. 应用:实际的使用;

  • 举例来说,科学可以发现“陶瓷可以做刀”,技术就是研究“怎样在实验室做刀”,工程是研究“工业化如何做刀”,应用就是”用到砍树“

  • 本课程学习的内容主要是在学习1,2层级的内容,值得注意的是,下层次的产物比上层次更容易过时

强人工智能与弱人工智能

强人工智能的目的是”造人“,弱人工智能的目的是”造工具“;

人工智能的发展阶段
  • 推理期 -> 知识期 -> 学习期;

机器学习

  • 经典定义:利用经验改善系统自身的性能
  • 机器学习有什么用?
    • 我们今天进入了大数据时代,但是 大数据 ≠ \ne = 大价值,
      机器学习就像是挖掘金矿的铲子,目的是发掘出有价值的部分
  • 机器学习已经无处不在
  • 机器学习并非一切皆可学:
    • 特征信息不充分:比如重要的特征信息没有获得
    • 样本信息不充分:比如只有很少的样本数据
机器学习的理论基础 PAC
  • 计算学习理论,Leslie Valiant(莱斯利 维利昂特)

P A C ( P r o b a b l y A p p r o x i m a t e l y C o r r e c t , 概率近似正确 ) P ( ∣ f ( x ) − y ∣ ≤ ϵ ) ≥ 1 − δ (1) PAC(Probably Approximately Correct,概率近似正确) \newline P(|f(x)-y| \le \epsilon) \ge 1 - \delta \tag{1} PAC(ProbablyApproximatelyCorrect,概率近似正确)P(f(x)yϵ)1δ(1)

机器学习解决的问题常常是 NP、 NPC 这样的问题;而理论基础就在于 PAC

基本术语

监督学习、无监督学习、半监督学习
一些术语
独立同分布假设(i.i.d)
假设空间与版本空间

我们可以这样来理解”学习过程“:

  • 学习过程就是在所有的假设组成的空间中进行搜索的过程

在很多语境中,学习 - 搜索 - 优化,这三个词语具有相似的内涵

这句话很值得深思,建议读者常常试着从这样的思路中考虑问题

h ^ ← min ⁡ h ∈ H O b j ( h ) \hat h \leftarrow \min_{h \in \mathcal{H} } Obj(h) h^hHminObj(h)

结合上面的公式来理解,学习 - 搜索 - 优化 就统一在了一起

从版本空间到归纳偏好

我们把与训练集一致的假设集合称为”版本空间“,这里隐含的是:有多个假设是符合训练集的
在这种情况下,我们就要考虑: 究竟要学习什么哪一个模型?
因此,我们就因除了 归纳偏好 这个概念

归纳偏好:

归纳偏好的其中一种原则是 ”奥卡姆剃刀原则“,也就是 ”若非必要,勿增实体“;
但是下面的 NFL定理,”没有免费的午餐“ 指出了任何一种算法都有自己不适用的场景;
也就是说,不存在一种普适的原则,机器学习还是要讲究 具体问题具体分析

NFL定理(No Free Lunch)

NFL定理
NFL定理:一个算法 L a \mathfrak{L}_a La 若在某些问题上比另一个算法 L b \mathfrak{L}_b Lb好,必定存在另一些问题,$\mathfrak{L}_b $比 L a \mathfrak{L}_a La更好

证明:
简单起见,假设样本空间 X \mathcal{X} X 和假设空间 H \mathcal{H} H 离散

∑ E o t e ( L a ∣ X , f ) = ∑ f ∑ h ∑ x ∈ X − X P ( x ) ⋅ I { h ( x ) ≠ f ( x ) } ⋅ P ( h ∣ X , L a ) = ∑ x ∈ X − X P ( X ) ∑ h P ( h ∣ X , L a ) ⋅ ∑ f I { h ( x ) ≠ f ( x ) } 这里关注的是,无论 h 如何,在均匀分布视角下,都是可以直接求和的 = ∑ x ∈ X − X P ( x ) ∑ h P ( h ∣ X , L a ) ⋅ 1 2 2 ∣ X ∣ = 2 ∣ X ∣ − 1 ∑ x ∈ X − X P ( x ) ∑ h P ( h ∣ X , L a ) = 2 ∣ X ∣ − 1 ∑ x ∈ X − X P ( x ) ⋅ 1 \sum E_{ote}(\mathfrak{L}_a |X,f) \newline = \sum_f \sum_h \sum_{x \in \mathcal{X} - X} P(x) \cdot I\{h(x) \ne f(x) \} \cdot P(h|X, \mathfrak{L}_a) \newline = \sum_{x \in \mathcal{X}-X} P(X) \sum_h P(h | X, \mathfrak{L}_a) \cdot \sum_f I \{{h(x)} \ne f(x) \} \newline 这里关注的是,无论h如何,在均匀分布视角下,都是可以直接求和的 \newline =\sum_{x \in \mathfrak{X} - X} P(x) \sum_h P(h |X, \mathfrak{L}_a) \cdot \frac 1 2 2^{|\mathcal{X}|} \newline = 2^{|\mathcal{X}| - 1} \sum_{x \in \mathcal {X} - X} P(x) \sum_h P(h| X, \mathfrak{L}_a) \newline = 2^{|\mathcal{X}| - 1} \sum_{x \in \mathcal {X} - X} P(x) \cdot 1 Eote(LaX,f)=fhxXXP(x)I{h(x)=f(x)}P(hX,La)=xXXP(X)hP(hX,La)fI{h(x)=f(x)}这里关注的是,无论h如何,在均匀分布视角下,都是可以直接求和的=xXXP(x)hP(hX,La)212X=2X1xXXP(x)hP(hX,La)=2X1xXXP(x)1

  • 我们可以看到,最终的总误差保证与学习算法是无关的!!
http://www.dtcms.com/wzjs/198069.html

相关文章:

  • 做网站哪些公司wordpress建站
  • 濮阳哪里做网站郑州seo全网营销
  • wordpress 文章之显示标题河南智能seo快速排名软件
  • php网站开发设计企业培训课程体系
  • 新冠变异毒株最新消息seo编辑是干什么的
  • web网站开发文档模板移动端优化
  • 做的比较好的小众网站网络优化公司有哪些
  • 电商模板网站微信营销的方法有哪些
  • 做刷网站怎么赚钱网站排名优化师
  • 帝国cms 做的博客网站郴州网络推广公司排名
  • 辽宁建设工程信息网投标流程沈阳seo技术
  • wordpress 企业网站主题seo和sem是什么意思
  • 做公司官网找谁济南网站优化
  • 做殡葬名片的网站公司网络推广方法
  • soho外贸网站建设大地seo视频
  • 男女做暖暖的试看网站酥酥影视贵阳网络推广外包
  • 电梯网站建设上海抖音seo公司
  • html网页制作总结网站seo标题优化技巧
  • 成都本地网站建站网站关键词优化
  • 丽水网站建设公司市场营销策略有哪些
  • 私服网站如何做seo网络推广外包公司排名
  • 做网站就上房山华网天下天津快速关键词排名
  • 做网站什么语言百色seo外包
  • 如何做网站超链接国产免费crm系统有哪些
  • 展示型网站包含哪些模块怎么样才能引流客人进店
  • 设置网站开场动画全部列表支持安卓浏览器软件下载
  • 临泉网站建设网站seo视频狼雨seo教程
  • king 主题WordPress网站优化策略分析
  • wordpress略缩图alt口碑优化seo
  • 网站建设免费的百度官方网站首页