当前位置: 首页 > wzjs >正文

泰州网站建设服务热线中央新闻今日要闻

泰州网站建设服务热线,中央新闻今日要闻,中天建设集团有限公司排名,招聘网站怎么做吸引人文章目录 1、需求2、ChatMemory中消息的存储位置3、实现步骤1、引入依赖2、配置Spring AI3、配置chatmemory4、java层传递conversaionId 4、验证5、完整代码6、参考文档 1、需求 我们知道大型语言模型 (LLM) 是无状态的,这就意味着他们不会保…

文章目录

  • 1、需求
  • 2、ChatMemory中消息的存储位置
  • 3、实现步骤
    • 1、引入依赖
    • 2、配置Spring AI
    • 3、配置chatmemory
    • 4、java层传递conversaionId
  • 4、验证
  • 5、完整代码
  • 6、参考文档

1、需求

我们知道大型语言模型 (LLM) 是无状态的,这就意味着他们不会保存之前的交互信息。当我们希望在一次会话中,模型支持多次交互,那么我们该如何实现呢? 在 Spring AI中提供了ChatMemory功能,它允许我们在与LLM的多次交互中存储与检索信息。此处我们借助Spring AI的ChatMemory功能实现一个简单的多轮对话。

    1. 集成ollama部署的本地模型
    1. 使用jdbc存储聊天历史信息(保存到mysql中)

2、ChatMemory中消息的存储位置

ChatMemory中消息的存储位置
默认情况下是存储在内存中,但是它也提供了JDBCCassandraNeo4j的实现。

如果我们想自定义实现存储该如何实现呢? 需要实现ChatMemoryRepository接口。此处我们不自己实现,使用Spring AI 提供的 JDBC存储实现。

注意:使用Spring AI 提供的JDBC实现需要引入 spring-ai-starter-model-chat-memory-repository-jdbc 包
ChatMemoryRepository

3、实现步骤

1、引入依赖

<properties><spring-ai.version>1.0.0</spring-ai.version><java.version>17</java.version><maven.compiler.source>17</maven.compiler.source><maven.compiler.target>17</maven.compiler.target>        <maven.compiler.compilerVersion>17</maven.compiler.compilerVersion>
</properties>
<dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><!-- 集成ollama --><dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-starter-model-ollama</artifactId></dependency><!-- 使用jdbc存储模型的聊天记录 --><dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-starter-model-chat-memory-repository-jdbc</artifactId></dependency><dependency><groupId>com.mysql</groupId><artifactId>mysql-connector-j</artifactId><scope>runtime</scope></dependency>
</dependencies>
<dependencyManagement><dependencies><dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-bom</artifactId><version>${spring-ai.version}</version><type>pom</type><scope>import</scope></dependency></dependencies>
</dependencyManagement>

2、配置Spring AI

spring:application:name: spring-ai-advisor-chat-memoryai:ollama:base-url: http://localhost:11434 # 配置ollama的地址chat:model: deepseek-r1:14b  # 配置模型的名称options:temperature: 0.7 # 配置模型温度chat:memory:repository:jdbc:initialize-schema: always# 配置初始化脚本的位置schema: classpath:org/springframework/ai/chat/memory/repository/jdbc/schema-mariadb.sqlplatform: mariadbdatasource:url: jdbc:mysql://127.0.0.1:3306/temp_work?useUnicode=true&characterEncoding=utf8&autoReconnectForPools=true&useSSL=falseusername: rootpassword: rootdriver-class-name: com.mysql.cj.jdbc.Driverlogging:level:# 用于支持llm模型输入前和输入后的日志打印org.springframework.ai.chat.client.advisor: debug

指定脚本的位置

3、配置chatmemory

import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.client.advisor.MessageChatMemoryAdvisor;
import org.springframework.ai.chat.client.advisor.SimpleLoggerAdvisor;
import org.springframework.ai.chat.memory.ChatMemory;
import org.springframework.ai.chat.memory.ChatMemoryRepository;
import org.springframework.ai.chat.memory.MessageWindowChatMemory;
import org.springframework.ai.chat.memory.repository.jdbc.JdbcChatMemoryRepository;
import org.springframework.ai.chat.memory.repository.jdbc.JdbcChatMemoryRepositoryDialect;
import org.springframework.ai.ollama.OllamaChatModel;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.jdbc.core.JdbcTemplate;import javax.sql.DataSource;/*** ai 配置* @author huan.fu* @date 2025/6/8 - 08:44*/
@Configuration
public class AiConfiguration {@Beanpublic JdbcChatMemoryRepository jdbcChatMemoryRepository(JdbcTemplate jdbcTemplate, DataSource dataSource) {JdbcChatMemoryRepositoryDialect dialect = JdbcChatMemoryRepositoryDialect.from(dataSource);return JdbcChatMemoryRepository.builder().jdbcTemplate(jdbcTemplate).dialect(dialect).build();}@Beanpublic ChatMemory chatMemory(ChatMemoryRepository jdbcChatMemoryRepository){return MessageWindowChatMemory.builder().chatMemoryRepository(jdbcChatMemoryRepository)// 每个会话最多记录20条信息.maxMessages(20).build();}@Beanpublic ChatClient chatClient(OllamaChatModel ollamaChatModel, ChatMemory chatMemory){// 配置模型 (因为我们使用的是 ollama, 所以此处写的是 OllamaChatModel)return ChatClient.builder(ollamaChatModel)// 默认系统提示词.defaultSystem("你是一个拥有丰富经验的编程小助手,擅长编写各种程序。")// 添加模型输入前和输入后日志打印.defaultAdvisors(new SimpleLoggerAdvisor(),// 配置 chat memory advisorMessageChatMemoryAdvisor.builder(chatMemory).build()).build();}
}

注入到advisor中

4、java层传递conversaionId

java层传递conversaionId
java层传递conversaionId

4、验证

依次访问如下2个http请求

http://localhost:8080/blockChat?prompt=介绍一下你自己&conversationId=123456789
http://localhost:8080/blockChat?prompt=我刚刚问的问题是什么&conversationId=123456789

验证结果
会话id需保持一致
从上图中可以,在第二次询问模型时,模型知道上次的问题是什么。

5、完整代码

https://gitee.com/huan1993/spring-cloud-parent/tree/master/spring-ai/spring-ai-advisor-chat-memory

6、参考文档

1、https://docs.spring.io/spring-ai/reference/api/chat-memory.html

http://www.dtcms.com/wzjs/138040.html

相关文章:

  • 著名logo设计案例海淀搜索引擎优化seo
  • html网站设计模板上海网站建设公司
  • 重庆的企业的网站建设谷歌关键词
  • 政府网站建设升级白皮书宁波网络推广seo软件
  • 简单的做海报的网站班级优化大师功能介绍
  • 重庆网站建设制作费用青岛快速排名优化
  • 全国企业信用信息天津seo诊断技术
  • 欧美电商网站人员优化是什么意思
  • 门户网站和网站的区别推广链接点击器app
  • 日本做头像的网站有哪些淘宝排名查询工具
  • 做搜狗网站优化首页软安卓系统最好优化软件
  • 府网站建设运维情况自查报告秦皇岛seo优化
  • app界面设计说明百度搜索引擎优化方式
  • 长沙做网站建设公司外链图片
  • 网站备案号 链接品牌网站建设公司
  • 公司网站设计需要什么国内搜索引擎有哪些
  • php网站权限设置磁力搜索引擎下载
  • 成都app开发搜索引擎优化的完整过程
  • 网站建设百科网络seo软件
  • 网站建设电话咨询让顾客进店的100条方法
  • 潍坊市住房和城乡建设局网站seo关键词优化工具
  • 网站建设费计入哪个科目老域名购买
  • 重庆sem优化百度快照优化排名
  • 网站站点层叠样式怎么做市场营销案例100例
  • 广州 做网站做推广的技巧
  • 哪些网站可以接兼职做网络营销的流程和方法
  • 移动app做的好的网站百度搜索风云榜小说总榜
  • 政府网站信息化工程建设方案开封网站seo
  • my网站域名十大新媒体平台有哪些
  • c语言如何做网站百度的链接