当前位置: 首页 > wzjs >正文

wordpress不显示内容你福州seo博客

wordpress不显示内容你,福州seo博客,wordpress 动态缓存,域名搜索引擎DAY 43 复习日 作业: kaggle找到一个图像数据集,用cnn网络进行训练并且用grad-cam做可视化 浙大疏锦行 选择 Dogs vs Cats 数据集(Kaggle经典二分类问题) 完整代码实现 1. 设置环境并加载数据 import os import numpy as np …

DAY 43 复习日

作业:
kaggle找到一个图像数据集,用cnn网络进行训练并且用grad-cam做可视化

@浙大疏锦行


选择 Dogs vs Cats 数据集(Kaggle经典二分类问题)

完整代码实现

1. 设置环境并加载数据

import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets, models
from torch.utils.data import DataLoader, random_split
import matplotlib.pyplot as plt
import cv2
from PIL import Image# 检查GPU可用性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")# 数据预处理
transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])# 加载数据集
dataset = datasets.ImageFolder('./dogs-vs-cats/train', transform=transform)# 划分训练集和验证集(80%训练,20%验证)
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)# 查看类别
print(f"Classes: {dataset.classes}")

2. 定义CNN模型(使用预训练的ResNet18)

class DogCatCNN(nn.Module):def __init__(self):super(DogCatCNN, self).__init__()# 使用预训练的ResNet18self.resnet = models.resnet18(pretrained=True)# 冻结所有卷积层参数(可选)for param in self.resnet.parameters():param.requires_grad = False# 替换最后的全连接层(适应我们的二分类问题)num_features = self.resnet.fc.in_featuresself.resnet.fc = nn.Sequential(nn.Linear(num_features, 256),nn.ReLU(),nn.Dropout(0.5),nn.Linear(256, 2)  # 2 classes: dog, cat)def forward(self, x):return self.resnet(x)model = DogCatCNN().to(device)

3. 训练函数

def train_model(model, criterion, optimizer, num_epochs=10):best_acc = 0.0for epoch in range(num_epochs):print(f'Epoch {epoch+1}/{num_epochs}')print('-' * 10)# 训练阶段model.train()running_loss = 0.0running_corrects = 0for inputs, labels in train_loader:inputs = inputs.to(device)labels = labels.to(device)optimizer.zero_grad()outputs = model(inputs)_, preds = torch.max(outputs, 1)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item() * inputs.size(0)running_corrects += torch.sum(preds == labels.data)epoch_loss = running_loss / len(train_loader.dataset)epoch_acc = running_corrects.double() / len(train_loader.dataset)print(f'Train Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')# 验证阶段model.eval()val_loss = 0.0val_corrects = 0with torch.no_grad():for inputs, labels in val_loader:inputs = inputs.to(device)labels = labels.to(device)outputs = model(inputs)_, preds = torch.max(outputs, 1)loss = criterion(outputs, labels)val_loss += loss.item() * inputs.size(0)val_corrects += torch.sum(preds == labels.data)val_loss = val_loss / len(val_loader.dataset)val_acc = val_corrects.double() / len(val_loader.dataset)print(f'Val Loss: {val_loss:.4f} Acc: {val_acc:.4f}\n')# 保存最佳模型if val_acc > best_acc:best_acc = val_acctorch.save(model.state_dict(), 'best_model.pth')print(f'Best val Acc: {best_acc:.4f}')return model# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练模型
model = train_model(model, criterion, optimizer, num_epochs=10)

4. Grad-CAM可视化实现

class GradCAM:def __init__(self, model, target_layer):self.model = modelself.target_layer = target_layerself.gradients = Noneself.activations = None# 注册钩子target_layer.register_forward_hook(self.save_activations)target_layer.register_backward_hook(self.save_gradients)def save_activations(self, module, input, output):self.activations = outputdef save_gradients(self, module, grad_input, grad_output):self.gradients = grad_output[0]def forward(self, x):return self.model(x)def __call__(self, x, class_idx=None):# 前向传播output = self.forward(x)if class_idx is None:class_idx = torch.argmax(output, dim=1).item()# 反向传播self.model.zero_grad()one_hot = torch.zeros_like(output)one_hot[0][class_idx] = 1output.backward(gradient=one_hot, retain_graph=True)# 计算权重pooled_gradients = torch.mean(self.gradients, dim=[0, 2, 3])# 加权特征图activations = self.activations[0]for i in range(activations.size(0)):activations[i, :, :] *= pooled_gradients[i]# 生成热图heatmap = torch.mean(activations, dim=0).detach().cpu().numpy()heatmap = np.maximum(heatmap, 0)heatmap /= np.max(heatmap)return heatmapdef visualize_gradcam(model, image_path, target_layer):# 加载并预处理图像img = Image.open(image_path).convert('RGB')img_tensor = transform(img).unsqueeze(0).to(device)# 获取预测类别model.eval()with torch.no_grad():output = model(img_tensor)pred_class = torch.argmax(output, dim=1).item()# 创建Grad-CAMgrad_cam = GradCAM(model, target_layer)heatmap = grad_cam(img_tensor, pred_class)# 处理原始图像img_np = np.array(img.resize((224, 224)))img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)# 生成热图叠加heatmap = cv2.resize(heatmap, (img_np.shape[1], img_np.shape[0]))heatmap = np.uint8(255 * heatmap)heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)superimposed_img = heatmap * 0.4 + img_np * 0.6superimposed_img = np.clip(superimposed_img, 0, 255).astype(np.uint8)# 显示结果plt.figure(figsize=(10, 5))plt.subplot(1, 2, 1)plt.imshow(cv2.cvtColor(img_np, cv2.COLOR_BGR2RGB))plt.title(f'Original (Pred: {dataset.classes[pred_class]})')plt.axis('off')plt.subplot(1, 2, 2)plt.imshow(cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB))plt.title('Grad-CAM')plt.axis('off')plt.show()# 选择目标层(ResNet的最后一个卷积层)
target_layer = model.resnet.layer4[-1].conv2# 可视化示例
test_image_path = './dogs-vs-cats/train/dog.100.jpg' 
visualize_gradcam(model, test_image_path, target_layer)
http://www.dtcms.com/wzjs/110458.html

相关文章:

  • 服装市场网站建设百度关键词排名销售
  • 泰安公司网站建设小红书推广
  • 如何找网站推广域名注册需要什么条件
  • 做报废厂房网站怎么做超级软文网
  • 办公室装修费怎么做账重庆网络seo公司
  • 注册去美国做住家保姆的网站怎么样推广自己的网站
  • 做投票网站教程网站数据统计
  • 做犯法任务的网站企业整站seo
  • 官方网站套餐网上找客户有什么渠道
  • 做dj音乐网站百度做广告怎么做
  • 做公益网站的原因网上营销方式和方法
  • 红色大气宽屏企业网站源码 带后台中英文双语外贸企业网站源码营销方案网站
  • 自己做单词卡的网站是什么国外网站推广平台有哪些
  • 做 理财网站有哪些免费网站制作app
  • 最炫表白网站html5源码今天国内最新消息
  • 一个网站可以做几级链接百度热搜关键词排名
  • 高端网站设计公司排行榜怎么做app推广代理
  • 渑池县建设局网站株洲seo优化推荐
  • 鞍山做网站公司海南百度竞价排名
  • 手机网站设计案例安徽网站设计
  • 甘肃省第八建设集团公司网站给你一个网站怎么优化
  • 家具网站建设规划书班级优化大师怎么用
  • 群辉做网站服务器配置想在百度做推广怎么做
  • 1800做网站因为专业自助建站的优势
  • 泰州泛亚信息做网站怎么样google seo 优化招聘
  • 在哪个网站可以做行测题seo关键词查询排名软件
  • 网站模板减肥网络运营推广合作
  • 佳木斯建网站的网络营销代运营外包公司
  • 网站管理文档怎么写百度推广基木鱼
  • 网站一级域名淘宝seo优化