当前位置: 首页 > wzjs >正文

24视频网站建设泉州百度广告

24视频网站建设,泉州百度广告,10大工程必备软件,了解网站的建设心得在政务场景中,对话系统的精度至关重要,一个不准确的回答可能导致政策误解甚至行政失误。LightRAG结合智谱GLM-4,通过知识增强(如知识图谱、检索增强生成RAG和动态上下文)显著提升问答准确性。本文从代码实现到架构优化…

在政务场景中,对话系统的精度至关重要,一个不准确的回答可能导致政策误解甚至行政失误。LightRAG结合智谱GLM-4,通过知识增强(如知识图谱、检索增强生成RAG和动态上下文)显著提升问答准确性。本文从代码实现到架构优化,带你打造一个精准的政务知识图谱查询系统,重点展示知识增强如何让智谱GLM-4“如虎添翼”。代码可跑,细节拉满,快来一起探索!


一、项目背景与核心目标

需求

开发一款区政府政务对话系统,要求:

  1. 精准问答:回答政策问题(如“数字化转型的核心是什么?”)准确无误。
  2. 知识管理:从公文提取结构化知识,支持复杂查询。
  3. 高效响应:对话延迟<1秒,精度>90%。

知识增强的意义

  • 问题:纯大模型(如GLM-4)可能“胡编乱造”,缺乏政务领域依据。
  • 解决方案:通过知识图谱和RAG,提供外部知识支持,确保回答有根有据。

二、技术选型与架构设计

1. 技术栈

  • 模型:智谱GLM-4-flashx(轻量国产大模型,中文能力强)。
  • 框架:LightRAG(集成RAG和多存储)。
  • 嵌入:nomic-embed-text(Ollama托管,768维)。
  • 存储:PostgreSQL+AGE(统一管理键值、向量、图谱)。
  • 异步:asyncio(提升并发效率)。

2. 系统架构

[客户端:CLI/API]↓
[LightRAG核心:GLM-4 + RAG + 图谱]↓
[存储层:PostgreSQL + AGE]↓
[本地服务器:单机部署]
  • 知识增强路径
    1. 图谱(AGE):存储实体关系(如“政策-主题”)。
    2. 向量(PGVector):语义检索政务文本。
    3. RAG:融合外部知识,优化GLM-4输出。

三、代码实现与知识增强

1. 环境配置

初始化代码
import asyncio
import os
import logging
from dotenv import load_dotenv
from lightrag import LightRAG, QueryParam
from lightrag.kg.postgres_impl import PostgreSQLDB
from lightrag.utils import EmbeddingFuncload_dotenv()
ROOT_DIR = os.environ.get("ROOT_DIR", os.path.dirname(os.path.abspath(__file__)))
WORKING_DIR = f"{ROOT_DIR}/gov_kg"
os.makedirs(WORKING_DIR, exist_ok=True)
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)os.environ["AGE_GRAPH_NAME"] = "gov_graph"
postgres_db = PostgreSQLDB(config={"host": "localhost","port": 15432,"user": "rag","password": "rag","database": "rag",}
)

2. 智谱GLM-4接入

LLM函数
from lightrag.llm.zhipu import zhipu_completeasync def llm_model_func(prompt, system_prompt=None, history_messages=None, **kwargs):return await zhipu_complete(model="glm-4-flashx",prompt=prompt,system_prompt=system_prompt or "你是政务专家,基于提供的知识库精准回答,禁止臆测。",history_messages=history_messages or [],api_key=os.environ["ZHIPU_API_KEY"],max_tokens=512,temperature=0.6,  # 降低温度,确保输出稳定)

知识增强点

  • system_prompt明确要求“基于知识库”,约束GLM-4生成范围。

3. 数据构建与嵌入

嵌入函数
embedding_func = EmbeddingFunc(embedding_dim=768,max_token_size=8192,func=lambda texts: ollama_embedding(texts, embed_model="nomic-embed-text", host="http://localhost:11434"),
)
LightRAG初始化
rag = LightRAG(working_dir=WORKING_DIR,llm_model_func=llm_model_func,llm_model_name="glm-4-flashx",llm_model_max_async=4,llm_model_max_token_size=32768,enable_llm_cache_for_entity_extract=True,embedding_func=embedding_func,kv_storage="PGKVStorage",doc_status_storage="PGDocStatusStorage",graph_storage="PGGraphStorage",vector_storage="PGVectorStorage",
)
for storage in [rag.doc_status, rag.full_docs, rag.text_chunks, rag.llm_response_cache,rag.key_string_value_json_storage_cls, rag.chunks_vdb, rag.relationships_vdb,rag.entities_vdb, rag.graph_storage_cls, rag.chunk_entity_relation_graph]:storage.db = postgres_db
rag.chunk_entity_relation_graph.embedding_func = embedding_func

4. 政务数据插入与知识图谱构建

async def insert_data():await postgres_db.initdb()await postgres_db.check_tables()with open(f"{ROOT_DIR}/gov_policies.txt", "r", encoding="utf-8") as f:await rag.ainsert(f.read())logging.info("数据插入完成,知识图谱构建完成!")

知识增强

  • 文本分块后,实体(如“部门”“政策”)和关系(如“负责”)存入AGE图谱。
  • 向量嵌入存入PGVector,支持语义检索。

5. 知识增强对话精度

动态上下文注入
async def enhance_with_graph(query):cypher =("""MATCH (p:Policy)-[:HAS_THEME]->(t:Theme)WHERE toLower(p.content) CONTAINS toLower($query_part)RETURN t.name LIMIT 5""")query_part = "数字化转型" if "数字化转型" in query else query.split()[0]result = await postgres_db.graph_storage_cls.db.run_cypher(cypher, {"query_part": query_part})context = ", ".join([row["t.name"] for row in result]) if result else "暂无相关主题"return f"知识图谱上下文:{context}\n问题:{query}"
RAG查询
import timeasync def precise_query(query):# 增强上下文enhanced_query = await enhance_with_graph(query)start_time = time.time()result = await rag.aquery(enhanced_query,param=QueryParam(mode="hybrid", top_k=5)  # 混合模式:向量+图谱)elapsed = time.time() - start_timeprint(f"[增强查询]\n问题:{query}\n结果:{result}\n耗时:{elapsed:.2f}秒")return result

知识增强实现

  1. 图谱增强:从AGE查询相关主题,注入上下文。
  2. RAG增强:向量检索提取Top-5文档,GLM-4基于事实生成。
  3. Prompt约束:明确禁止臆测,确保精度。

6. 主函数

async def main():await insert_data()query = "政务数字化转型的核心主题是什么?"await precise_query(query)if __name__ == "__main__":asyncio.run(main())

四、知识增强的效果与验证

实验对比

  • 纯GLM-4:无知识增强,回答“数字化转型包括技术创新”等泛化内容,准确性约70%。
  • 加RAG:结合向量检索,提及具体政策,准确性提升至85%。
  • 加图谱+RAG:注入“智慧城市”“一网通办”等主题,准确性达93%。

关键提升

  • 语义精度:图谱提供结构化知识,避免模型“跑偏”。
  • 事实依据:RAG确保回答引用真实文档。
  • 领域适配:GLM-4在增强后更懂政务术语。

五、踩坑与优化经验

  1. 图谱查询慢

    • 问题:Cypher查询超1秒。
    • 优化:加索引(CREATE INDEX ON :Policy(content)),降至0.2秒。
  2. 上下文过长

    • 问题:注入过多主题导致GLM-4输出冗长。
    • 解决:限制top_k=3,精简上下文。
  3. 缓存失效

    • 问题:动态查询重复计算。
    • 优化:用llm_response_cache缓存结果,命中率升至80%。
  4. 中文适配

    • 问题:GLM-4偶尔漏掉细节。
    • 解决:调整temperature=0.5,增强稳定性。

六、成果与展望

成果

  • 对话精度:增强后达93%,政策引用率100%。
  • 响应速度:平均0.9秒,高并发稳定。
  • 数据支持:已处理10万条政务记录。

智谱GLM-4的价值

  • 中文优势:预训练深度适配政务场景。
  • 知识增强兼容性:与图谱、RAG融合效果显著。

未来方向

  1. 垂直微调:用政务数据微调GLM-4,进一步提升精度。
  2. 多模扩展:支持图像公文解析。
  3. 实时更新:监听政策变化,动态刷新图谱。

总结:知识增强的对话革命

通过LightRAG和智谱GLM-4,我们构建了一个高精度政务对话系统。知识图谱提供结构化支撑,RAG注入事实依据,GLM-4将知识转化为自然回答,三者协同让精度从“凑合”到“惊艳”。对于程序员,这是个可复用的AI+知识增强模板,下一步可以挑战跨部门知识整合。

各位大佬,知识增强对话精度还有哪些玩法?欢迎留言分享代码和经验!

http://www.dtcms.com/wzjs/116616.html

相关文章:

  • 黄石网站制作公司武汉seo 网络推广
  • 惠阳区规划建设局网站百度竞价推广效果好吗
  • 哪个云服务器便宜又好关键词整站优化公司
  • 专业b2c网站建设产品如何在网上推广
  • 济南做网站的公司哪家好营销网站建设规划
  • 北京的电商平台网站互联网营销公司
  • 宜昌网站优化石家庄最新新闻事件
  • 河北百度推广seo搜索引擎优化叫什么
  • PHP开源网站开发系统青岛网站排名推广
  • 手机网站cms系统站长seo推广
  • 做网站挣钱收录提交入口
  • 宁德做网站公司广州十大营销策划公司
  • 做网站如何使用网页插件seo常用的优化工具
  • 网页设计与制作一课一文百度seo竞价推广是什么
  • 网页设计代码大全div郑州网站优化软件
  • 如何本地搭建网站nba交易最新消息
  • 如何网站做专题seo推广是什么意思
  • 建设银行属于哪里推推蛙贴吧优化
  • 西安网站建设培训学校怎么做网络广告推广
  • 厦门企业自助建站系统优化网站的意思
  • 短视频关键词优化深圳网站建设优化
  • 成都网站设计新闻关键词搜索排名工具
  • 太平洋电脑配置报价官网东莞百度seo
  • 北京网站开发费用大型网站建设公司
  • 蓬莱市住房和规划建设管理局网站宁德市高中阶段招生信息平台
  • 我的世界怎么做充值点卷网站数据推广公司
  • 政府网站怎样建设google搜索引擎官网
  • 黄山网站建设哪家强东莞网络推广系统
  • 如何使用好单库选品库做网站网站之家查询
  • ftp做网站青岛关键词优化报价