当前位置: 首页 > news >正文

基于word2vec 和 fast-pytorch-kmeans 的文本聚类实现,利用GPU加速提高聚类速度

文章目录

    • 简介
      • GPU加速
    • 代码实现
    • kmeans
    • 聚类结果
    • kmeans 绘图函数
    • 相关资料参考

简介

本文使用text2vec模型,把文本转成向量。使用text2vec提供的训练好的模型权重进行文本编码,不重新训练word2vec模型。

直接用训练好的模型权重,方便又快捷

完整可运行代码如下:
https://github.com/JieShenAI/csdn/blob/main/machine_learning/kmeans_pytorch.ipynb

GPU加速

传统sklearn的TF-IDF文本转向量,在CPU上计算速度较慢。使用text2vec通过cuda加速,加快文本转向量的速度。
传统使用sklearn的kmeans聚类算法在CPU上计算,如遇到大批量的数据,计算耗时太长。
故本文使用fast-pytorch-kmeans 和 kmeans_pytorch包,基于pytorch在GPU上计算,提高聚类速度。

代码实现

装包

pip install fast-pytorch-kmeans text2vec
import torch
import numpy as np

from text2vec import SentenceModel

不使用SentenceModel模型也可以,在 text2vec 中,还有很多其他的向量编码模型供选择。

文本编码模型

embedder = SentenceModel()

异常情况说明,该模型需要从huggingface下载模型权重,目前被墙了。(请想办法解决,或者尝试其他的编码模型)
在这里插入图片描述

语料库如下:

# Corpus with example sentences
corpus = [
    '花呗更改绑定银行卡',
    '我什么时候开通了花呗',
    'A man is eating food.',
    'A man is eating a piece of bread.',
    'The girl is carrying a baby.',
    'A man is riding a horse.',
    'A woman is playing violin.',
    'Two men pushed carts through the woods.',
    'A man is riding a white horse on an enclosed ground.',
]
corpus_embeddings = embedder.encode(corpus)
# numpy 转成 pytorch, 并转移到GPU显存中
corpus_embeddings = torch.from_numpy(corpus_embeddings).to('cuda')

如下图所示,编码的向量是768维;

type(corpus_embeddings), corpus_embeddings.shape

在这里插入图片描述

kmeans

kmeans_pytorch vs fast-pytorch-kmeans:
在实验过程中,利用kmeans_pytorch 针对30万个词进行聚类的时候,发现显存炸了,程序崩溃退出。30万个词的词向量,占用显存还不到2G,但是运行kmeans_pytorch后,显存就炸了。

fast-pytorch-kmeans不存在上述显存崩溃的问题。本以为词向量很多会跑很长时间,但fast-pytorch-kmeans在非常短的时间内就完成了kmeans聚类。
后来一想也理解了,先开始在CPU跑花费了很长时间,这是因为CPU并行很差,需要逐个跑完。而在GPU里大量数据拼成一个矩阵,做一个减法,就可以算出批量节点和中心点的距离。

# kmeans
# from kmeans_pytorch import kmeans
from fast_pytorch_kmeans import KMeans

num_class = 3 # 分类类别数
kmeans = KMeans(n_clusters=num_class, mode='euclidean', verbose=1)

# 模型预测结果
labels = kmeans.fit_predict(corpus_embeddings)

聚类程序运行如下:

used 2 iterations (0.3682s) to cluster 9 items into 3 clusters

模型中心点坐标:

kmeans.centroids

在这里插入图片描述

聚类结果

class_data = {
    i:[]
    for i in range(3)
}

for text,cls in zip(corpus, labels):
    class_data[cls.item()].append(text)

class_data

文本聚类结果如下:
0: 女
1:男
2: 花呗
在这里插入图片描述

kmeans 绘图函数

封装了KMeansPlot 绘图类,方便聚类结果可视化

from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

class KMeansPlot:

    def __init__(self, numClass=4, func_type='PCA'):
        if func_type == 'PCA':
            self.func_plot = PCA(n_components=2)
        elif func_type == 'TSNE':
            from sklearn.manifold import TSNE
            self.func_plot = TSNE(2)
        self.numClass = numClass

    def plot_cluster(self, result, pos, cluster_centers=None):
        plt.figure(2)
        Lab = [[] for i in range(self.numClass)]
        index = 0
        for labi in result:
            Lab[labi].append(index)
            index += 1
        color = ['oy', 'ob', 'og', 'cs', 'ms', 'bs', 'ks', 'ys', 'yv', 'mv', 'bv', 'kv', 'gv', 'y^', 'm^', 'b^', 'k^',
                    'g^'] * 3

        for i in range(self.numClass):
            x1 = []
            y1 = []
            for ind1 in pos[Lab[i]]:
                # print ind1
                try:
                    y1.append(ind1[1])
                    x1.append(ind1[0])
                except:
                    pass
            plt.plot(x1, y1, color[i])

        if cluster_centers is not None:
            #绘制初始中心点
            x1 = []
            y1 = []

            for ind1 in cluster_centers:
                try:
                    y1.append(ind1[1])
                    x1.append(ind1[0])
                except:
                    pass

            plt.plot(x1, y1, "rv") #绘制中心

        plt.show()

    def plot(self, weight, label, cluster_centers=None):
        pos = self.func_plot.fit_transform(weight)
        # 高维的中心点坐标,也经过降维处理
        cluster_centers = self.func_plot.fit_transform(cluster_centers)
        self.plot_cluster(list(label), pos, cluster_centers)

kmeans.centroids :是一个高维空间的中心点坐标,故在plot函数中,将其降维到2D平面上;

k_plot = KMeansPlot(num_class)
k_plot.plot(
    corpus_embeddings.to('cpu'),
    labels.to('cpu'),
    kmeans.centroids.to('cpu')
)

在这里插入图片描述

完整可运行代码如下:
https://github.com/JieShenAI/csdn/blob/main/machine_learning/kmeans_pytorch.ipynb

相关资料参考

  • 动手实战基于 ML 的中文短文本聚类
  • tfidf和word2vec构建文本词向量并做文本聚类
    提到训练word2vec模型,silhouette_score_show(word2vec, 'word2vec') 轮廓系数,判断分几个类别最好。
  • 机器学习:Kmeans聚类算法总结及GPU配置加速demo
    PyTorch kmeans 加速。from scratch 实现;
  • KMeans算法全面解析与应用案例 通俗易懂的原理讲解
  • pytorch K-means算法的实现 底层代码实现
  • 【pytorch】Kmeans_pytorch用于一般聚类任务的代码模板 使用pytorch封装的kmeans包实现,包括训练和预测;
  • text2vec 包

相关文章:

  • cmd常用指令
  • 【Docker】Prometheus 容器部署及应用
  • 软件杯 深度学习 python opencv 实现人脸年龄性别识别
  • Selenium-webdriver_manager判断是否已经下载过驱动(复用缓存驱动)
  • 【C++】了解一下编码
  • FPGA的时钟资源
  • 【C++刷题】优选算法——动态规划第一辑
  • 欧科云链做客Google Cloud与WhalerDAO专题论坛,畅谈Web3数据机遇
  • vue常用指令
  • 008:安装Docker
  • Unity2019.2.x 导出apk 安装到安卓Android12+及以上的系统版本 安装出现-108 安装包似乎无效的解决办法
  • 探秘Nutch:揭秘开源搜索引擎的工作原理与无限应用可能(三)
  • 【vue在主页中点击主页面如何弹出一个指定某个页面的窗口】
  • SQLiteC/C++接口详细介绍之sqlite3类(十五)
  • C++ 虚函数表
  • python之自动化(django)
  • 数据库 | Mysql - [binlog]
  • 【LeetCode热题100】148. 排序链表(链表)
  • 门牌制作-蓝桥杯?-Lua 中文代码解题第3题
  • 第八阶段:uni-app小程序 --首页开发(2)
  • 中华人民共和国和巴西联邦共和国关于强化携手构建更公正世界和更可持续星球的中巴命运共同体,共同维护多边主义的联合声明
  • 云南威信麟凤镇通报“有人穿‘警察’字样雨衣参与丧事”:已立案查处
  • 夜读丨取稿费的乐趣
  • 有关部门负责人就《新时代的中国国家安全》白皮书答记者问
  • 消费维权周报|上周涉手机投诉较多,涉拍照模糊、屏幕漏液等
  • 西藏日喀则市拉孜县发生5.5级地震,震源深度10公里