当前位置: 首页 > news >正文

基于Python的自然语言处理系列(60):使用 LangChain 构建 Multi-Vector Retriever 进行文档检索

在 NLP 和 AI 领域,基于嵌入(Embeddings)进行文档检索已成为一种高效的解决方案。本文介绍如何使用 LangChain 构建 Multi-Vector Retriever,实现对长文档的分块索引和高效检索。

1. 环境准备

首先,我们需要安装相关依赖库。

pip install langchain chromadb torch transformers

2. 加载文档并进行预处理

我们先使用 TextLoader 读取多个文档,并进行分块处理,以便后续向量化索引。

from langchain.document_loaders import TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter

loaders = [
    TextLoader("../docs/txt/paul_graham_essay.txt"),
    TextLoader("../docs/txt/state_of_the_union.txt"),
]
docs = []
for loader in loaders:
    docs.extend(loader.load())

# 设定 chunk size 以确保文档分块合理
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000)
docs = text_splitter.split_documents(docs)

3. 选择嵌入模型

这里我们使用 HuggingFaceInstructEmbeddings 进行向量化,支持 GPU 加速。

from langchain.embeddings import HuggingFaceInstructEmbeddings
import torch

embedding_model = HuggingFaceInstructEmbeddings(
    model_name='hkunlp/instructor-base',
    model_kwargs={'device': torch.device('cuda' if torch.cuda.is_available() else 'cpu')}
)

4. 构建向量存储与检索器

使用 Chroma 作为向量数据库,并配置 MultiVectorRetriever

from langchain.vectorstores import Chroma
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.storage import InMemoryStore
import uuid

# 创建向量存储
vectorstore = Chroma(collection_name="full_documents", embedding_function=embedding_model)

# 使用 InMemoryStore 作为存储层
store = InMemoryStore()
id_key = "doc_id"
retriever = MultiVectorRetriever(vectorstore=vectorstore, docstore=store, id_key=id_key)

# 生成唯一文档 ID
doc_ids = [str(uuid.uuid4()) for _ in docs]

5. 进一步拆分文档并存储

使用 RecursiveCharacterTextSplitter 进一步拆分子文档,并添加到向量存储中。

child_text_splitter = RecursiveCharacterTextSplitter(chunk_size=400)

sub_docs = []
for i, doc in enumerate(docs):
    _id = doc_ids[i]
    _sub_docs = child_text_splitter.split_documents([doc])
    for _doc in _sub_docs:
        _doc.metadata[id_key] = _id
    sub_docs.extend(_sub_docs)

retriever.vectorstore.add_documents(sub_docs)
retriever.docstore.mset(list(zip(doc_ids, docs)))

6. 进行相似度搜索

我们可以使用 similarity_search 进行相似内容检索。

retriever.vectorstore.similarity_search("justice breyer")

或者使用 get_relevant_documents 查找相关文档:

retriever.get_relevant_documents("retriever")

7. 结论

通过 LangChain 的 Multi-Vector Retriever,我们能够高效地处理长文档并实现精准检索。结合 HuggingFace 的嵌入模型和 Chroma 向量数据库,可以实现快速的文本相似度匹配,非常适用于 法律文档、技术文档 等长文本搜索任务。

如果你对 LangChain 的更多应用感兴趣,欢迎在评论区交流!

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

相关文章:

  • Redis部署详细步骤
  • 数字电子技术基础(三十三)——编码器
  • 数据库练习
  • 使用ZMQ和protobuf实现C++程序与Python程序的通信
  • 多行为推荐综述
  • 混境之地1
  • 批量删除 PDF 中的所有图片、所有二维码图片以及指定的某张图片
  • CCF CSP 第33次(2024.03)(2_相似度计算_C++)(字符串中字母大小写转换+哈希集合)
  • Mysql的单表查询和多表查询
  • Cookie、sessionStorage、localStorage
  • vue3(笔记)5.0--pinia工具的知识扩展
  • 系统工程-信息系统的分类
  • How to use pgbench to test performance for PostgreSQL?
  • 【C++】String类的模拟实现
  • [Qt5] QMetaObject::invokeMethod使用
  • Netty源码—7.ByteBuf原理三
  • 蓝桥云客-染色时间
  • 1424.对角线遍历
  • 322 零钱兑换
  • 【大模型基础_毛玉仁】4.4 低秩适配方法
  • 云南省安委会办公室:大理州安全生产形势比较严峻,事故总量一直居高不下
  • 2025世界数字教育大会将于5月14日至16日在武汉举办
  • 梵蒂冈选出新教皇,外交部:望新教皇推动中梵关系不断改善
  • 奥园集团将召开债券持有人会议,拟调整“H20奥园2”本息兑付方案
  • 罗氏制药全新生物制药生产基地投资项目在沪启动:预计投资20.4亿元,2031年投产
  • 暴雨蓝色预警:南方开启较强降雨过程