当前位置: 首页 > news >正文

Normal distribution (正态分布)

Normal distribution {正态分布}

  • 1. Normal distribution (正态分布) = Gaussian distribution (高斯分布)
    • 1.1. Probability density function (概率密度函数)
    • 1.2. Standard normal distribution (标准正态分布)
    • 1.3. Cumulative distribution function (累积分布函数)
  • 2. 正态分布的性质
  • References

normal /ˈnɔːrml/ adj. 正常的,一般的,典型的,精神正常的,意识健全的 n. 法线,常态,一般水平,通常标准

1. Normal distribution (正态分布) = Gaussian distribution (高斯分布)

In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable.
正态分布 (normal distribution) 是一种常见的连续概率分布,物理学中称为高斯分布 (Gaussian distribution)。

若随机变量 X X X 服从一个平均数为 μ \mu μ、标准差为 σ \sigma σ 的正态分布,则记为 X ∼ N ( μ , σ 2 ) {X\sim N(\mu ,\sigma ^{2})} XN(μ,σ2),其概率密度函数为 f ( x ) = 1 σ 2 π    e − ( x − μ ) 2 2 σ 2  ⁣ {\displaystyle f(x)={\frac {1}{\sigma {\sqrt {2\pi }}}}\;e^{-{\frac {\left(x-\mu \right)^{2}}{2\sigma ^{2}}}}\!} f(x)=σ2π 1e2σ2(xμ)2

The general form of its probability density function is f ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 f(x) = \frac{1}{\sqrt{2\pi\sigma^2} } e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2πσ2 1e2σ2(xμ)2.

The parameter ⁠ μ \mu μ⁠ is the mean or expectation of the distribution (and also its median and mode), while the parameter σ 2 \sigma^2 σ2 is the variance. The standard deviation of the distribution is ⁠ σ \sigma σ⁠ (sigma). A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate.
正态分布的数学期望值 μ {\displaystyle \mu} μ,可解释为位置参数,决定了分布的位置;方差 σ 2 {\displaystyle \sigma ^{2}} σ2 或标准差 σ {\displaystyle \sigma} σ 可解释为尺度参数,决定了分布的幅度。

The normal distribution is often referred to as N ( μ , σ 2 ) {\textstyle N(\mu ,\sigma ^{2})} N(μ,σ2) or ⁠ N ( μ , σ 2 ) {\displaystyle {\mathcal {N}}(\mu ,\sigma ^{2})} N(μ,σ2)⁠. Thus when a random variable ⁠ X ⁠ {\displaystyle X}⁠ X is normally distributed with mean μ ⁠ {\displaystyle \mu }⁠ μ and standard deviation ⁠ σ ⁠ {\displaystyle \sigma }⁠ σ, one may write X ∼ N ( μ , σ 2 ) {\displaystyle X\sim {\mathcal {N}}(\mu ,\sigma ^{2})} XN(μ,σ2).
μ {\displaystyle \mu } μ 数学期望 = 中位数 = 众数, σ 2 > 0 {\displaystyle \sigma ^{2}>0} σ2>0 方差, x ∈ ( − ∞ ; + ∞ )  ⁣ {\displaystyle x\in (-\infty ;+\infty )\!} x(;+) 值域,

1.1. Probability density function (概率密度函数)

The red curve is the standard normal distribution (红线代表标准正态分布).

在这里插入图片描述

概率密度函数能够表示随机变量每个取值有多大的可能性。

正态分布均值为 μ {\displaystyle \mu} μ 方差为 σ 2 {\displaystyle \sigma ^{2}} σ2 (标准差为 σ {\displaystyle \sigma} σ) 的概率密度函数为

f ( x ; μ , σ ) = 1 σ 2 π   exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) {\displaystyle f(x;\mu ,\sigma )={\frac {1}{\sigma {\sqrt {2\pi }}}}\,\exp \left(-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}\right)} f(x;μ,σ)=σ2π 1exp(2σ2(xμ)2)

A normal distribution is sometimes informally called a bell curve.
正态分布的概率密度函数曲线呈钟形,因此又称为钟形曲线。

The normal distribution with density f ( x ) {\textstyle f(x)} f(x) (mean ⁠ μ {\displaystyle \mu } μ⁠ and variance σ 2 > 0 {\textstyle \sigma ^{2}>0} σ2>0) has the following properties:

  • It is symmetric around the point x = μ {\textstyle x=\mu} x=μ, which is at the same time the mode, the median and the mean of the distribution.
    正态分布的概率密度函数关于平均值对称。
  • It is unimodal: its first derivative is positive for x < μ {\textstyle x<\mu} x<μ, negative for x > μ {\textstyle x>\mu} x>μ, and zero only at x = μ {\textstyle x=\mu} x=μ.
  • The area bounded by the curve and the ⁠ x ⁠ {\displaystyle x}⁠ x-axis is unity (i.e. equal to one).
  • Its first derivative is f ′ ( x ) = − x − μ σ 2 f ( x ) {\textstyle f'(x)=-{\frac {x-\mu }{\sigma ^{2}}}f(x)} f(x)=σ2xμf(x).
  • Its second derivative is f ′ ′ ( x ) = ( x − μ ) 2 − σ 2 σ 4 f ( x ) {\textstyle f''(x)={\frac {(x-\mu )^{2}-\sigma ^{2}}{\sigma ^{4}}}f(x)} f′′(x)=σ4(xμ)2σ2f(x).
  • Its density has two inflection points (where the second derivative of ⁠ f {\displaystyle f} f⁠ is zero and changes sign), located one standard deviation away from the mean, namely at x = μ − σ {\textstyle x=\mu -\sigma } x=μσ and x = μ + σ {\textstyle x=\mu +\sigma} x=μ+σ.
    函数曲线的拐点 (inflection point) 为离平均数一个标准差距离的位置。
  • Its density is log-concave.
  • Its density is infinitely differentiable, indeed supersmooth of order 2.

1.2. Standard normal distribution (标准正态分布)

The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} μ=0 and σ 2 = 1 {\textstyle \sigma ^{2}=1} σ2=1, and it is described by this probability density function (or density)

φ ( z ) = e − z 2 2 2 π   . {\displaystyle \varphi (z)={\frac {e^{\frac {-z^{2}}{2}}}{\sqrt {2\pi }}}\,.} φ(z)=2π e2z2.

The variable ⁠ z ⁠ {\displaystyle z}⁠ z has a mean of 0 and a variance and standard deviation of 1. The density φ ( z ) {\textstyle \varphi (z)} φ(z) has its peak 1 2 π {\textstyle {\frac {1}{\sqrt {2\pi }}}} 2π 1 at z = 0 {\textstyle z=0} z=0 and inflection points at z = + 1 {\textstyle z=+1} z=+1 and ⁠ z = − 1 {\displaystyle z=-1} z=1⁠.

inflection /ɪnˈflekʃn/ n. (尤指词尾的) 屈折变化,语调的抑扬变化

如果一个随机变量 X {\displaystyle X} X 服从正态分布,则记为 X ∼ N ( μ , σ 2 ) {\displaystyle X} \sim {\displaystyle N(\mu ,\sigma ^{2})} XN(μ,σ2)。如果 μ = 0 {\displaystyle \mu = 0} μ=0 并且 σ = 1 {\displaystyle \sigma = 1} σ=1,则这个正态分布被称为标准正态分布,可以简化为

f ( x ) = 1 2 π   exp ⁡ ( − x 2 2 ) {\displaystyle f(x)={\frac {1}{\sqrt {2\pi }}}\,\exp \left(-{\frac {x^{2}}{2}}\right)} f(x)=2π 1exp(2x2)

The probability density of the standard Gaussian distribution (standard normal distribution, with zero mean and unit variance) is often denoted with the Greek letter ⁠ ϕ {\displaystyle \phi } ϕ⁠ (phi). The alternative form of the Greek letter phi, ⁠ φ {\displaystyle \varphi} φ⁠, is also used quite often.

Furthermore, the density ⁠ φ ⁠ {\displaystyle \varphi}⁠ φ of the standard normal distribution (i.e. μ = 0 {\textstyle \mu =0} μ=0 and σ = 1 {\textstyle \sigma =1} σ=1) also has the following properties:

  • Its first derivative is φ ′ ( x ) = − x φ ( x ) {\textstyle \varphi '(x)=-x\varphi (x)} φ(x)=xφ(x).
  • Its second derivative is φ ′ ′ ( x ) = ( x 2 − 1 ) φ ( x ) {\textstyle \varphi ''(x)=(x^{2}-1)\varphi (x)} φ′′(x)=(x21)φ(x).
  • The probability that a normally distributed variable ⁠ X {\displaystyle X} X⁠ with known ⁠ μ {\displaystyle \mu } μ⁠ and σ 2 {\textstyle \sigma ^{2}} σ2 is in a particular set, can be calculated by using the fact that the fraction Z = ( X − μ ) / σ {\textstyle Z=(X-\mu )/\sigma } Z=(Xμ)/σ has a standard normal distribution.

1.3. Cumulative distribution function (累积分布函数)

在这里插入图片描述

累积分布函数是指随机变量 X {\displaystyle X} X 小于或等于 x {\displaystyle x} x 的概率,用概率密度函数表示为

F ( x ; μ , σ ) = 1 σ 2 π ∫ − ∞ x exp ⁡ ( − ( t − μ ) 2 2 σ 2   )   d t {\displaystyle F(x;\mu ,\sigma )={\frac {1}{\sigma {\sqrt {2\pi }}}}\int _{-\infty }^{x}\exp \left(-{\frac {(t-\mu )^{2}}{2\sigma ^{2}}}\ \right)\,dt} F(x;μ,σ)=σ2π 1xexp(2σ2(tμ)2 )dt

For a generic normal distribution with density ⁠ f {\displaystyle f} f⁠, mean ⁠ μ ⁠ {\displaystyle \mu }⁠ μ and variance σ 2 {\textstyle \sigma ^{2}} σ2, the cumulative distribution function is

F ( x ) = Φ ( x − μ σ ) = 1 2 [ 1 + erf ⁡ ( x − μ σ 2 ) ]   . {\displaystyle F(x)=\Phi {\left({\frac {x-\mu }{\sigma }}\right)}={\frac {1}{2}}\left[1+\operatorname {erf} \left({\frac {x-\mu }{\sigma {\sqrt {2}}}}\right)\right]\,.} F(x)=Φ(σxμ)=21[1+erf(σ2 xμ)].

正态分布的累积分布函数能够由一个叫做误差函数的特殊函数表示为

Φ ( z ) = 1 2 [ 1 + erf ⁡ ( z − μ σ 2 ) ] {\displaystyle \Phi (z)={\frac {1}{2}}\left[1+\operatorname {erf} \left({\frac {z-\mu }{\sigma {\sqrt {2}}}}\right)\right]} Φ(z)=21[1+erf(σ2 zμ)]

The cumulative distribution function (CDF) of the standard normal distribution, usually denoted with the capital Greek letter ⁠{\displaystyle \Phi }⁠, is the integral

Φ ( x ) = 1 2 π ∫ − ∞ x e − t 2 / 2   d t   . {\displaystyle \Phi (x)={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{x}e^{-t^{2}/2}\,dt\,.} Φ(x)=2π 1xet2/2dt.

标准正态分布的累积分布函数习惯上记为 Φ {\displaystyle \Phi } Φ,它仅仅是指 μ = 0 {\displaystyle \mu =0} μ=0, σ = 1 {\displaystyle \sigma =1} σ=1 时的值

Φ ( x ) = F ( x ; 0 , 1 ) = 1 2 π ∫ − ∞ x exp ⁡ ( − t 2 2 )   d t {\displaystyle \Phi (x)=F(x;0,1)={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{x}\exp \left(-{\frac {t^{2}}{2}}\right)\,dt} Φ(x)=F(x;0,1)=2π 1xexp(2t2)dt

标准正态分布用误差函数表示的公式简化为

Φ ( z ) = 1 2 [ 1 + erf ⁡ ( z 2 ) ] {\displaystyle \Phi (z)={\frac {1}{2}}\left[1+\operatorname {erf} \left({\frac {z}{\sqrt {2}}}\right)\right]} Φ(z)=21[1+erf(2 z)]

2. 正态分布的性质

如果 X ∼ N ( μ , σ 2 )   {\displaystyle X\sim N(\mu ,\sigma ^{2})\,} XN(μ,σ2) a {\displaystyle a} a b {\displaystyle b} b 是实数,那么 a X + b ∼ N ( a μ + b , ( a σ ) 2 ) {\displaystyle aX+b\sim N(a\mu +b,(a\sigma )^{2})} aX+bN(aμ+b,()2).

如果 X ∼ N ( μ X , σ X 2 ) {\displaystyle X\sim N(\mu _{X},\sigma _{X}^{2})} XN(μX,σX2) Y ∼ N ( μ Y , σ Y 2 ) {\displaystyle Y\sim N(\mu _{Y},\sigma _{Y}^{2})} YN(μY,σY2) 是统计独立的正态随机变量,那么

  • 它们的和满足正态分布 U = X + Y ∼ N ( μ X + μ Y , σ X 2 + σ Y 2 ) {\displaystyle U=X+Y\sim N(\mu _{X}+\mu _{Y},\sigma _{X}^{2}+\sigma _{Y}^{2})} U=X+YN(μX+μY,σX2+σY2)
    它们的差满足正态分布 V = X − Y ∼ N ( μ X − μ Y , σ X 2 + σ Y 2 ) {\displaystyle V=X-Y\sim N(\mu _{X}-\mu _{Y},\sigma _{X}^{2}+\sigma _{Y}^{2})} V=XYN(μXμY,σX2+σY2)
  • U {\displaystyle U} U V {\displaystyle V} V 两者是相互独立的,要求 X X X Y Y Y 的方差相等。

References

[1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/
[2] Normal distribution, https://en.wikipedia.org/wiki/Normal_distribution

相关文章:

  • Windows安装Jenkins配置Allure踩坑,必须单独配置当前windows系统为新的node节点,才可在工具位置中指定节点服务器allure的位置
  • C语言-访问者模式详解与实践
  • Spring boot 3.4 后 SDK 升级,暨 UI API/MCP 计划
  • 线程控制学习
  • MCP Facade Generator:助力 MCP 协议接口实现的强大工具
  • 【C语言】C语言使用随机数srand,rand
  • nacos-actuator漏洞
  • apt 常见报错及解决方法
  • 本地部署 Firecrawl
  • 【nodejs】爬虫路漫漫,关于nodejs的基操
  • CAJ转PDF:复杂的转换背后有哪些挑战?
  • rocky linux yum源配置
  • 图论 | 98. 所有可达路径
  • 机器学习、深度学习解决方案设计方案通用审核流程(solution architect review)
  • 从扩展黎曼泽塔函数构造物质和时空的结构-5
  • 【页面组件】——1
  • 使用DeepSeek进行审稿和反馈审稿意见相关流程和提示词分享
  • 【算法】常见排序算法(插入排序、选择排序、交换排序和归并排序)
  • LLM之RAG理论(十四)| RAG 最佳实践
  • Pi型隶属函数(Π-shaped Membership Function)的详细介绍及python示例
  • 美国恶劣天气已造成至少28人死亡
  • 上海小学生暑(寒)托班会增设开办期数、延长办班时间吗?团市委回应
  • 全国多家健身房女性月卡延长,补足因月经期耽误的健身时间
  • 河南一县政府党组成员签订抵制违规吃喝问题承诺书,现场交给县长
  • 广西壮族自治区政府主席蓝天立任上被查
  • 陕西三原高新区违法占用土地,被自然资源局罚款10万元