股票量化交易开发 Yfinance
以下是一段基于Python的股票量化分析代码,包含数据获取、技术指标计算、策略回测和可视化功能:
python
| import yfinance as yf | |
| import pandas as pd | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| import seaborn as sns | |
| from backtesting import Backtest, Strategy | |
| from backtesting.lib import crossover | |
| # 参数设置 | |
| SYMBOL = 'AAPL' # 股票代码 | |
| START_DATE = '2020-01-01' | |
| END_DATE = '2023-12-31' | |
| FAST_MA = 20 # 快速均线周期 | |
| SLOW_MA = 50 # 慢速均线周期 | |
| RSI_PERIOD = 14 # RSI周期 | |
| BB_PERIOD = 20 # 布林带周期 | |
| # 获取数据 | |
| def get_stock_data(symbol, start, end): | |
| data = yf.download(symbol, start=start, end=end) | |
| data = data[['Open', 'High', 'Low', 'Close', 'Volume']] | |
| data.columns = ['open', 'high', 'low', 'close', 'volume'] | |
| return data.dropna() | |
| # 计算技术指标 | |
| def calculate_technical_indicators(df): | |
| # 移动平均线 | |
| df['fast_ma'] = df['close'].rolling(FAST_MA).mean() | |
| df['slow_ma'] = df['close'].rolling(SLOW_MA).mean() | |
| # RSI计算 | |
| delta = df['close'].diff() | |
| gain = delta.where(delta > 0, 0) | |
| loss = -delta.where(delta < 0, 0) | |
| avg_gain = gain.rolling(RSI_PERIOD).mean() | |
| avg_loss = loss.rolling(RSI_PERIOD).mean() | |
| rs = avg_gain / avg_loss | |
| df['rsi'] = 100 - (100 / (1 + rs)) | |
| # 布林带 | |
| df['bb_mid'] = df['close'].rolling(BB_PERIOD).mean() | |
| std = df['close'].rolling(BB_PERIOD).std() | |
| df['bb_upper'] = df['bb_mid'] + 2 * std | |
| df['bb_lower'] = df['bb_mid'] - 2 * std | |
| return df.dropna() | |
| # 双均线策略 | |
| class DualMovingAverageStrategy(Strategy): | |
| def init(self): | |
| self.fast_ma = self.I(lambda x: x, self.data.close.rolling(FAST_MA).mean()) | |
| self.slow_ma = self.I(lambda x: x, self.data.close.rolling(SLOW_MA).mean()) | |
| def next(self): | |
| if crossover(self.fast_ma, self.slow_ma): | |
| self.buy() | |
| elif crossover(self.slow_ma, self.fast_ma): | |
| self.sell() | |
| # 可视化函数 | |
| def visualize_results(data, bt): | |
| plt.figure(figsize=(16, 20)) | |
| # 价格与均线 | |
| plt.subplot(3, 1, 1) | |
| plt.plot(data['close'], label='Price') | |
| plt.plot(data['fast_ma'], label=f'{FAST_MA} MA') | |
| plt.plot(data['slow_ma'], label=f'{SLOW_MA} MA') | |
| plt.title('Price and Moving Averages') | |
| plt.legend() | |
| # RSI | |
| plt.subplot(3, 1, 2) | |
| plt.plot(data['rsi'], label='RSI') | |
| plt.axhline(70, color='red', linestyle='--') | |
| plt.axhline(30, color='green', linestyle='--') | |
| plt.title('RSI Indicator') | |
| # 策略收益曲线 | |
| plt.subplot(3, 1, 3) | |
| plt.plot(bt._equity_curve['Equity'], label='Strategy') | |
| plt.plot(data['close']/data['close'].iloc[0], label='Buy & Hold') | |
| plt.title('Strategy vs Buy & Hold') | |
| plt.legend() | |
| plt.tight_layout() | |
| plt.show() | |
| # 主程序 | |
| if __name__ == "__main__": | |
| # 获取并处理数据 | |
| data = get_stock_data(SYMBOL, START_DATE, END_DATE) | |
| data = calculate_technical_indicators(data) | |
| # 回测策略 | |
| bt = Backtest(data, DualMovingAverageStrategy, cash=100000, commission=.002) | |
| stats = bt.run() | |
| # 输出关键指标 | |
| print(f"策略年化收益率: {stats['Return [%]']:.2f}%") | |
| print(f"夏普比率: {stats['Sharpe Ratio']:.2f}") | |
| print(f"最大回撤: {stats['Max. Drawdown [%]']:.2f}%") | |
| print(f"交易次数: {stats['# Trades']}") | |
| # 可视化结果 | |
| visualize_results(data, bt) | |
| # 显示详细回测报告 | |
| bt.plot() | 
代码功能说明:
-  数据获取: - 使用yfinance获取雅虎财经数据
- 包含开盘价、最高价、最低价、收盘价和成交量
 
-  技术指标计算: - 双移动平均线(快速MA和慢速MA)
- 相对强弱指数(RSI)
- 布林带指标(Bollinger Bands)
 
-  交易策略: - 双均线交叉策略(金叉买入,死叉卖出)
- 包含0.2%的交易手续费
- 初始资金10万美元
 
-  风险管理: - 计算年化收益率
- 夏普比率评估风险调整收益
- 最大回撤指标
 
-  可视化功能: - 价格与均线走势图
- RSI指标图
- 策略与买入持有收益对比
- 交互式回测结果展示
 
使用说明:
- 安装依赖库:
bash
pip install yfinance pandas numpy matplotlib seaborn backtesting- 修改参数:
python
| # 可调整股票代码和时间范围 | |
| SYMBOL = 'TSLA' # 改为其他股票代码如TSLA | |
| START_DATE = '2022-01-01' # 修改开始日期 | |
| FAST_MA = 10 # 调整快速均线周期 | 
- 策略优化示例:
python
| # 增加止损止盈逻辑 | |
| class EnhancedStrategy(DualMovingAverageStrategy): | |
| def next(self): | |
| if crossover(self.fast_ma, self.slow_ma): | |
| self.buy(sl=self.data.low[-1]*0.95, tp=self.data.high[-1]*1.15) | |
| elif crossover(self.slow_ma, self.fast_ma): | |
| self.sell() | 
该代码实现了完整的量化分析流程,可以作为量化交易策略开发的基础框架。建议在Jupyter Notebook中运行以获得更好的交互体验。
