当前位置: 首页 > news >正文

从Win回顾微软平台的各种技术

厝睬钥虑大家好,这里是Coding茶水间。

今天我来分享一个基于深度学习的图像增强系统,主要使用开源的Zero-DCE模型。

这个系统可以帮助我们将曝光不足的暗淡图片处理成曝光正常的清晰图像。

下面我将详细介绍这个系统的原理、演示效果、代码实现以及训练方法。

如果你感兴趣,欢迎点赞、收藏和关注!

Zero-DCE模型在不同迭代下的图像增强效果对比:

对比度图

什么是图像增强?

图像增强指的是将曝光不足、暗淡的图片通过算法处理,得到曝光正常、细节清晰的图像。

例如,一张夜晚拍摄的照片,可能因为光线不足而看起来很模糊,经过增强后,就能看到更多细节,如绿植、房屋等。

什么是图像增强

这个系统基于GitHub上的开源项目Zero-DCE模型。

这是一个几年前比较火的低光照图像增强模型。其核心思想是将图像增强抽象成一个增强曲线来进行训练,而不需要成对的低曝光和高曝光图像作为参考。

这就是为什么它叫“Zero-Reference”(零参考),不需要依赖参考图像进行训练,这是一个很大的优点。

Zero-DCE开源地址:https://github.com/Li-Chongyi/Zero-DCE

演示效果

让我们来看一些演示效果。系统处理速度很快,只需几秒钟就能输出结果。

国外街道示例:左侧是原图,暗淡无光;经过处理后,右侧得到曝光正常的图片,细节更丰富。

街道对比

野外景色示例:原图中绿植模糊不清,增强后一下子看得非常清楚。

野外对比

夜晚图像示例:如月球上的图片或小房屋,原图几乎漆黑,增强后变得清晰明亮。

月球对比

这些效果是通过PyQt5界面封装的,你可以直接打开图片,进行增强处理,并保存结果。

我已经将模型和界面打包在一起,方便使用。

代码实现

下面是完整的代码实现。这是一个使用PyQt5构建的GUI应用,集成了Zero-DCE模型。代码包括图像加载、模型推理、结果显示和保存功能。

python

from datetime import datetime

import math

import sys

from shibie import Ui_MainWindow

from PyQt5.QtWidgets import *

from PyQt5 import QtCore, QtGui, QtWidgets

from PyQt5.QtCore import *

from PyQt5.QtGui import *

import cv2 as cv

import numpy as np

import os

import time

import matplotlib.pyplot as plt

import torch

import torch.nn as nn

from torchvision import transforms

from PIL import Image

import model

class ImageProcess(QMainWindow, Ui_MainWindow):

def __init__(self, parent=None):

super(ImageProcess, self).__init__()

self.setupUi(self)

self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 3. 加载模型

self.DCE_net = model.enhance_net_nopool().to(self.device)

self.DCE_net.load_state_dict(torch.load('snapshots/Epoch99.pth', map_location=self.device))

self.DCE_net.eval()

def paintEvent(self, event):

painter = QPainter(self)

pixmap = QPixmap("main_background.jpg") # 加载背景图片

painter.drawPixmap(self.rect(), pixmap) # 将图片拉伸填充整个窗口

painter.end()

def cv_imread(self,filePath):

cv_img = cv.imdecode(np.fromfile(filePath, dtype=np.uint8), -1)

return cv_img

def dakaituxiang(self):

filename, _ = QFileDialog.getOpenFileName(self, '打开图片')

if filename:

# self.captured = cv.imdecode(np.fromfile(filename,dtype=np.uint8),-1)

self.captured = self.cv_imread(str(filename))

self.image_path = filename

# self.captured = cv.imread(str(filename))

# OpenCV图像以BGR通道存储,显示时需要从BGR转到RGB

# self.captured = cv.cvtColor(self.captured, cv.COLOR_BGR2RGB)

rows, cols, channels = self.captured.shape

bytesPerLine = channels * cols

cv_img=cv.cvtColor(self.captured,cv.COLOR_RGB2BGR)

QImg = QImage(cv_img.data, cols, rows,

bytesPerLine, QImage.Format_RGB888)

self.timecha = 0

self.result_tu = self.captured

self.axes_yuantu.setPixmap(QPixmap.fromImage(QImg).scaled(

self.axes_yuantu.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation))

def btn_save(self):

if hasattr(self, 'result_tu') and self.result_tu is not None:

filename, _ = QFileDialog.getSaveFileName(self, '保存图片', '', 'Images (*.png *.jpg *.bmp)')

if filename:

cv.imwrite(filename, cv.cvtColor(self.result_tu, cv.COLOR_RGB2BGR))

QMessageBox.information(self, '提示', '图片保存成功!')

else:

QMessageBox.warning(self, '警告', '没有可保存的图像!')

def btnzero(self):

original_img = Image.open(self.image_path).convert('RGB')

starttime = time.time()

# 2. 图像预处理

transform = transforms.Compose([

transforms.ToTensor(),

])

img_tensor = transform(original_img).unsqueeze(0).to(self.device)

with torch.no_grad():

_, enhanced_img, _ = self.DCE_net(img_tensor)

# 后处理

enhanced_img = enhanced_img.squeeze(0).permute(1, 2, 0).cpu().numpy()

enhanced_img = np.clip(enhanced_img * 255, 0, 255).astype(np.uint8)

enhanced_img = Image.fromarray(enhanced_img)

enhanced_img = np.array(enhanced_img) # 直接转 NumPy 数组

enhanced_img = cv.cvtColor(enhanced_img, cv.COLOR_RGB2BGR)

enhanced_img = cv.cvtColor(enhanced_img, cv.COLOR_BGR2RGB)

endtime = time.time()

timecha = (endtime - starttime) * 1000

timecha = round(timecha, 2)

self.timecha = timecha

self.result_tu = enhanced_img

# 8. 显示结果

cv_img = enhanced_img

rows, cols, channels = enhanced_img.shape

bytesPerLine = channels * cols

QImg = QImage(cv_img.data, cols, rows,bytesPerLine, QImage.Format_RGB888)

# 显示在GUI的axes_quzao区域(可根据需要修改为其他QLabel)

self.axes_bianyuan_2.setPixmap(QPixmap.fromImage(QImg).scaled(

self.axes_bianyuan_2.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation))

return

if __name__ == '__main__':

app = QApplication(sys.argv)

window = ImageProcess()

window.show()

sys.exit(app.exec_())

代码说明

初始化:加载Zero-DCE模型,使用预训练权重Epoch99.pth。

打开图片:通过dakaituxiang方法选择并显示原图,支持中文路径。

增强处理:btnzero方法使用Torch进行图像预处理、模型推理和后处理,输出增强图像。

保存:btn_save方法保存增强后的图像。

界面:使用PyQt5,背景图片为main_background.jpg,结果显示在指定Label中。

二次训练

系统还提供了二次训练功能。你可以在data/train_data文件夹中使用作者提供的约2000张不同曝光程度的图像进行训练。运行训练函数时,可能需要调整一些旧代码(我已经做过优化,确保运行OK)。训练记录会保存,过程大约需要几个小时,取决于硬件。

例如,训练后你可以得到更好的模型,适应特定场景。

结语

这就是基于深度学习的图像增强系统分享。如果你想获取完整代码和打包文件,欢迎在评论区留下邮箱,我会发给你。记得三连支持哦!如果有问题,随时讨论。

http://www.dtcms.com/a/619353.html

相关文章:

  • 抗EOS设计详解及实际"栗子"
  • 许昌网站建设汉狮怎么样中国万网张向东
  • 做网站设计用什么软件最好网站建设连接数据库
  • 线代强化NO8|向量|运算|线性相关|内积正交|施密特正交化|线性表示的判定证明
  • 组合优化与递归搜索:24点求解的表达式树构建与算法完备性
  • 江苏建设厅官方网站正规的网站制作电话
  • C#21、什么是扩展方法
  • ps模板网站苏州城乡建设局的网站首页
  • idc 公司网站模板网站开发报价单模板
  • 大模型-vllm如何部署新模型-2
  • 我编辑好了一个urdf文件,但是我怕有什么错误,有什么可以用于调试或者发现urdf文件错误的命令行工具吗
  • 外贸公司网站有哪些西安市建设工程信息网平台
  • 中英文网站切换建设银行扬中网站
  • Java Faker库详解
  • 用七牛做网站定制化网站开发的好处
  • 荆门做网站北京网站备案注销中心
  • 著名建站公司哈尔滨市工程建设招投标网
  • 第三方软件验收测试报告有哪些测试内容?多少钱才算合适?
  • 松江品划网站建设推广宿州建设银行网站
  • 昆明网站建设网站建设视觉传播设计与制作专业
  • 软件常用运行库丨去游戏组件
  • 超市如何建立网站产品推广介绍怎么写
  • 网站建设品牌排行榜湘潭做网站口碑好磐石网络
  • 十大设计创意产品网站青岛网站建设seo优化
  • 仿制网站侵权吗网站开发流程的认识
  • Vue Vue与VueComponent的关系
  • 精益求精,支持处理嵌套表格的Word表格转HTML表格
  • 网站推广是什么意思大连建设网水电费查询网址
  • 海丰网站建设中国台州网
  • 关于设计图的网站wordpress优化教程