AstraOS 1.90 基础架构版(续)
AstraOS 1.90 基础架构版 - 详细文档编写(续)
4. 用户操作指南 (docs/03-用户操作指南.md)
# AstraOS 1.90 用户操作指南## 目录
1. [快速入门](#1-快速入门)
2. [系统界面](#2-系统界面)
3. [量子任务管理](#3-量子任务管理)
4. [混合计算操作](#4-混合计算操作)
5. [数据管理](#5-数据管理)
6. [监控与优化](#6-监控与优化)
7. [故障处理](#7-故障处理)
8. [高级功能](#8-高级功能)## 1. 快速入门### 1.1 首次登录**Web控制台访问**:
bash
默认访问地址
https://your-server-ip:8080
使用默认凭证登录
用户名: admin
密码: astraos123 (首次登录后请立即修改)
**命令行访问**:
bash
SSH登录
ssh admin@your-server-ip
使用AstraOS命令行工具
astra-cli login --username admin --password astraos123
### 1.2 创建第一个量子任务**通过Web界面**:
1. 登录控制台 → 量子任务 → 新建任务
2. 选择"基础量子电路"模板
3. 配置参数:- 量子比特数: 2- 门操作: H[0], CNOT[0,1]- 测量: 全部测量- 运行次数: 1000
4. 点击"运行"并查看结果**通过命令行**:
bash
创建简单量子电路
astra-cli quantum create-circuit --qubits 2 --gates "H0,CNOT0-1" --shots 1000
查看任务状态
astra-cli quantum list-tasks
获取任务结果
astra-cli quantum get-result <task-id>
**通过Python API**:
python
from astra_client import QuantumClient
初始化客户端
client = QuantumClient(host="your-server-ip", port=8080)
client.login("admin", "password")
创建并运行量子任务
task = client.create_quantum_task(
qubits=2,
gates=[("H", 0), ("CNOT", 0, 1)],
shots=1000
)
等待完成并获取结果
result = client.get_task_result(task.id)
print(f"结果: {result.counts}")
## 2. 系统界面### 2.1 控制台布局**主界面区域**:
┌────────────────────────────────────────┐
│ 顶部导航栏 │
├────────────────────────────────────────┤
│ 左侧菜单 │ 主工作区 │
│ • 仪表盘 │ │
│ • 量子任务 │ 任务详情/图表/结果 │
│ • 混合计算 │ │
│ • 数据管理 │ │
│ • 系统监控 │ │
│ • 用户管理 │ │
└────────────────────────────────────────┘
### 2.2 仪表盘功能**实时监控面板**:
- 系统健康状态 (CPU、内存、量子处理器使用率)
- 当前运行任务统计
- 最近任务执行历史
- 资源使用趋势图
- 警报和通知中心## 3. 量子任务管理### 3.1 任务创建选项**基本参数**:
yaml
任务配置示例
task:
name: "quantum-fourier-transform"
type: "quantum-circuit"
qubits: 5
gates:
-
{gate: "H", target: 0}
-
{gate: "H", target: 1}
-
{gate: "H", target: 2}
-
{gate: "H", target: 3}
-
{gate: "H", target: 4}
-
{gate: "CPHASE", control: 0, target: 1, angle: 1.57}
-
{gate: "CPHASE", control: 1, target: 2, angle: 0.79}
measurements: "all"
shots: 5000
optimization: "level2"
error_mitigation: true
**高级选项**:
- 错误缓解策略 (error mitigation)
- 电路优化级别 (optimization level)
- 硬件后端选择 (backend selection)
- 自定义初始状态 (initial state)
- 噪声模型配置 (noise model)### 3.2 任务监控与控制**查看运行中任务**:
bash
列出所有任务
astra-cli quantum list-tasks --status running
查看任务详情
astra-cli quantum describe-task <task-id>
实时监控任务进度
astra-cli quantum monitor-task <task-id>
取消任务
astra-cli quantum cancel-task <task-id>
**任务状态说明**:
- `PENDING`: 任务已提交,等待调度
- `RUNNING`: 任务正在执行
- `COMPLETED`: 任务成功完成
- `FAILED`: 任务执行失败
- `CANCELLED`: 任务被取消## 4. 混合计算操作### 4.1 创建混合任务**定义经典-量子工作流**:
python
from astra_client import HybridWorkflow
创建混合工作流
workflow = HybridWorkflow("quantum-machine-learning")
添加经典预处理步骤
workflow.add_classical_step(
name="data_preprocessing",
command="python preprocess.py --input data.csv",
inputs=["data.csv"],
outputs=["processed_data.npy"]
)
添加量子计算步骤
workflow.add_quantum_step(
name="quantum_feature_map",
circuit=quantum_circuit,
inputs=["processed_data.npy"],
outputs=["quantum_features.npy"]
)
添加经典后处理步骤
workflow.add_classical_step(
name="model_training",
command="python train_model.py --features quantum_features.npy",
inputs=["quantum_features.npy"],
outputs=["model.pkl"]
)
提交工作流
workflow_id = client.submit_workflow(workflow)
### 4.2 工作流管理**监控混合工作流**:
bash
查看工作流列表
astra-cli hybrid list-workflows
查看工作流详情
astra-cli hybrid describe-workflow <workflow-id>
查看工作流执行图
astra-cli hybrid visualize-workflow <workflow-id> --output workflow.png
## 5. 数据管理### 5.1 数据上传与下载**文件操作**:
bash
上传数据文件
astra-cli data upload local_file.csv /data/quantum/input.csv
下载结果文件
astra-cli data download /data/quantum/results.npy ./results.npy
列出数据文件
astra-cli data list /data/quantum/
删除数据文件
astra-cli data delete /data/quantum/old_data.csv
**数据格式支持**:
- CSV/JSON (经典数据)
- NumPy arrays (.npy)
- Quantum State (.qstate)
- Circuit Description (.qasm)
- Result Sets (.qresult)### 5.2 数据预处理**使用内置工具**:
python
from astra_data import DataProcessor
创建数据处理器
processor = DataProcessor()
加载数据
data = processor.load_csv("data.csv")
量子特征编码
quantum_ready = processor.quantum_encode(
data,
method="amplitude_encoding"
)
保存预处理数据
processor.save_npy(quantum_ready, "processed_data.npy")
## 6. 监控与优化### 6.1 系统监控**实时监控命令**:
bash
查看系统状态
astra-cli monitor system
查看量子硬件状态
astra-cli monitor quantum
查看任务队列
astra-cli monitor queue
查看资源使用情况
astra-cli monitor resources
**设置监控警报**:
yaml
警报配置示例
alerts:
-
name: "high_cpu_usage"
condition: "cpu.usage > 0.8"
duration: "5m"
severity: "warning"
actions: ["notify_email", "log_alert"]
-
name: "quantum_error_rate"
condition: "quantum.error_rate > 0.1"
duration: "2m"
severity: "critical"
actions: ["scale_down", "notify_ops"]
### 6.2 性能优化**任务优化建议**:
bash
获取任务优化建议
astra-cli optimize analyze-task <task-id>
应用优化建议
astra-cli optimize apply-suggestions <task-id>
性能基准测试
astra-cli benchmark run --type quantum --qubits 5 --depth 10
## 7. 故障处理### 7.1 常见问题解决**任务失败排查**:
bash
查看任务日志
astra-cli task logs <task-id>
查看详细错误信息
astra-cli task errors <task-id>
重新提交失败任务
astra-cli task retry <task-id>
**系统问题诊断**:
bash
运行系统诊断
astra-cli diagnose system
检查网络连接
astra-cli diagnose network
验证量子后端连接
astra-cli diagnose quantum-backend
### 7.2 恢复操作**从备份恢复**:
bash
列出可用备份
astra-cli backup list
创建系统备份
astra-cli backup create --name pre-upgrade-backup
从备份恢复
astra-cli backup restore <backup-id>
## 8. 高级功能### 8.1 批量任务处理**创建任务批量**:
python
from astra_client import BatchProcessor
创建批量处理器
batch = BatchProcessor()
添加多个任务
for i in range(10):
circuit = create_circuit(variation=i)
batch.add_task(circuit, shots=1000)
提交批量任务
batch_id = batch.submit()
监控批量进度
progress = batch.monitor_progress()
### 8.2 自定义量子门**定义自定义量子操作**:
python
from astra_quantum import CustomGate
创建自定义量子门
class MyCustomGate(CustomGate):
def init(self, angle):
self.angle = angle
self.qubit_count = 2
def matrix(self):import numpy as npreturn np.array([[np.cos(self.angle), 0, 0, -1j*np.sin(self.angle)],[0, np.cos(self.angle), -1j*np.sin(self.angle), 0],[0, -1j*np.sin(self.angle), np.cos(self.angle), 0],[-1j*np.sin(self.angle), 0, 0, np.cos(self.angle)]])
在电路中使用自定义门
circuit = QuantumCircuit(2)
circuit.add_gate(MyCustomGate(3.14/4), [0, 1])
### 8.3 API自动化**使用REST API**:
python
import requests
import json
API认证
auth_payload = {
"username": "admin",
"password": "your_password"
}
response = requests.post("https://astraos/api/auth/login", json=auth_payload)
token = response.json()["token"]
创建量子任务
headers = {"Authorization": f"Bearer {token}"}
task_payload = {
"name": "api-generated-task",
"qubits": 3,
"gates": [
{"gate": "H", "target": 0},
{"gate": "CNOT", "control": 0, "target": 1},
{"gate": "CNOT", "control": 1, "target": 2}
],
"shots": 2000
}
response = requests.post("https://astraos/api/quantum/tasks",
json=task_payload, headers=headers)
task_id = response.json()["id"]
## 附录### 常用命令速查表| 操作 | 命令 |
|------|------|
| 登录系统 | `astra-cli login` |
| 查看任务列表 | `astra-cli quantum list-tasks` |
| 创建量子电路 | `astra-cli quantum create-circuit` |
| 监控系统 | `astra-cli monitor system` |
| 上传数据 | `astra-cli data upload <local> <remote>` |
| 查看日志 | `astra-cli task logs <task-id>` |
| 创建工作流 | `astra-cli hybrid create-workflow` |### 支持的量子和类操作**单量子比特门**:
- `H` (Hadamard)
- `X`, `Y`, `Z` (Pauli gates)
- `S`, `T` (Phase gates)
- `RX`, `RY`, `RZ` (Rotation gates)
- `U1`, `U2`, `U3` (Universal gates)**多量子比特门**:
- `CNOT` (Controlled-NOT)
- `CZ` (Controlled-Z)
- `CRX`, `CRY`, `CRZ` (Controlled rotations)
- `SWAP`
- `Toffoli` (CCNOT)**测量操作**:
- `measure` (单量子比特测量)
- `measure_all` (全量子比特测量)
- `measure_selected` (选择测量)---**文档版本**: 1.0
**最后更新**: 2024-03-20
**维护者**: AstraOS 用户支持团队
5. 开发者手册 (docs/04-开发者手册.md)
# AstraOS 1.90 开发者手册## 目录
1. [开发环境搭建](#1-开发环境搭建)
2. [API开发指南](#2-api开发指南)
3. [量子算法开发](#3-量子算法开发)
4. [混合应用开发](#4-混合应用开发)
5. [测试与调试](#5-测试与调试)
6. [性能优化](#6-性能优化)
7. [贡献指南](#7-贡献指南)## 1. 开发环境搭建### 1.1 环境要求**开发工具**:
bash
必需工具
Python 3.9+
Node.js 16+ (Web界面开发)
Docker 20.10+
Git
推荐IDE
VS Code with Python extension
PyCharm Professional
Jupyter Notebook/Lab
浏览器开发工具
Chrome DevTools
Quantum Development Toolkit extension
### 1.2 开发环境配置**本地开发设置**:
bash
克隆开发版本
git clone -b develop https://github.com/astra-os/astraos.git
cd astraos
创建开发环境
python -m venv .venv
source .venv/bin/activate # Linux/Mac
或 .venv\Scripts\activate # Windows
安装开发依赖
pip install -r requirements-dev.txt
pip install -e . # 可编辑模式安装
设置开发配置
cp config/dev_config.example.yaml config/dev_config.yaml
**Docker开发环境**:
dockerfile
Dockerfile.dev
FROM astraos/base:1.90-dev
安装开发工具
RUN apt-get update && apt-get install -y \
git \
vim \
curl \
wget \
build-essential
设置开发环境
WORKDIR /app
COPY . .
RUN pip install -r requirements-dev.txt
开发服务器端口
EXPOSE 8080 8081 3000
启动开发服务器
CMD ["python", "-m", "astra_dev", "runserver"]
### 1.3 调试环境配置**调试设置**:
python
.vscode/launch.json
{
"version": "0.2.0",
"configurations": [
{
"name": "Python: AstraOS Debug",
"type": "python",
"request": "launch",
"program": "${workspaceFolder}/src/main.py",
"args": ["--config", "config/dev_config.yaml"],
"env": {
"PYTHONPATH": "${workspaceFolder}/src",
"ASTRA_ENV": "development"
}
}
]
}
## 2. API开发指南### 2.1 REST API规范**API基础结构**:
python
from astra_api import APIRouter, QuantumAPIException
创建API路由
router = APIRouter(prefix="/api/v1/quantum")
@router.post("/tasks")
async def create_quantum_task(task_request: QuantumTaskRequest):
"""
创建量子计算任务
Args:task_request: 任务请求参数Returns:TaskResponse: 任务创建响应Raises:QuantumAPIException: 参数验证错误
"""
# 参数验证
if not task_request.qubits or task_request.qubits > 20:raise QuantumAPIException("Qubits must be between 1 and 20")# 创建任务
task = await quantum_service.create_task(task_request)return TaskResponse(task_id=task.id,status=task.status,estimated_time=task.estimated_time
)
**API响应格式**:
json
{
"success": true,
"data": {
"task_id": "task_123456",
"status": "pending",
"created_at": "2024-03-20T10:30:00Z"
},
"error": null,
"metadata": {
"version": "1.90.0",
"api_time": "50ms"
}
}
### 2.2 Python SDK开发**SDK基础用法**:
python
from astra_sdk import QuantumClient, HybridWorkflow, DataManager
class MyQuantumApp:
def init(self, api_key: str):
self.client = QuantumClient(api_key=api_key)
self.workflow_manager = HybridWorkflow(client=self.client)
self.data_manager = DataManager(client=self.client)
async def run_quantum_algorithm(self, input_data):"""运行量子算法"""# 上传输入数据data_ref = await self.data_manager.upload(input_data)# 创建量子任务task = await self.client.create_task({"circuit": self.build_quantum_circuit(),"input_data": data_ref,"shots": 5000})# 等待结果result = await task.wait_for_result()return self.process_result(result)
### 2.3 WebSocket实时API**实时任务监控**:
python
import asyncio
from astra_sdk import WebSocketClient
async def monitor_task_realtime(task_id: str):
async with WebSocketClient() as ws:
# 订阅任务更新
await ws.subscribe_task(task_id)
# 实时处理更新
async for update in ws.listen():print(f"任务状态: {update.status}")print(f"进度: {update.progress}%")if update.status == "completed":print(f"结果: {update.result}")break
## 3. 量子算法开发### 3.1 量子电路构建**基础电路构建**:
python
from astra_quantum import QuantumCircuit, QuantumRegister
方法1: 使用内置构建器
def create_bell_state_circuit():
circuit = QuantumCircuit(2)
circuit.h(0) # Hadamard门 on qubit 0
circuit.cx(0, 1) # CNOT门 control=0, target=1
circuit.measure_all() # 测量所有量子比特
return circuit
方法2: 使用QASM字符串
qasm_string = """
OPENQASM 2.0;
include "qelib1.inc";
qreg q[2];
creg c[2];
h q[0];
cx q[0], q[1];
measure q -> c;
"""
circuit = QuantumCircuit.from_qasm(qasm_string)
**高级电路构建**:
python
from astra_quantum import QuantumCircuit, gates
def create_quantum_ml_circuit(features, parameters):
"""创建量子机器学习电路"""
n_qubits = len(features) * 2
circuit = QuantumCircuit(n_qubits)
# 特征编码
for i, feature in enumerate(features):circuit.ry(feature, i) # 角度编码# 变分量子层
for layer in range(3):# 纠缠层for i in range(0, n_qubits-1, 2):circuit.cz(i, i+1)# 旋转层for i in range(n_qubits):circuit.rx(parameters[layer][i], i)circuit.rz(parameters[layer][i+n_qubits], i)return circuit
### 3.2 量子算法模板**Grover搜索算法**:
python
from astra_algorithms import GroverAlgorithm
class MyGroverSearch(GroverAlgorithm):
def oracle(self, circuit):
"""标记目标状态的Oracle"""
# 标记 |101⟩状态
circuit.z(0) # 翻转相位
circuit.z(2)
def diffusion(self, circuit):"""扩散操作"""n = circuit.num_qubitsfor i in range(n):circuit.h(i)circuit.x(i)# 多控制Z门circuit.h(n-1)circuit.mct(list(range(n-1)), n-1) # 多控制Toffolicircuit.h(n-1)for i in range(n):circuit.x(i)circuit.h(i)
使用算法
grover = MyGroverSearch(num_qubits=3, iterations=2)
result = grover.run(shots=1000)
## 4. 混合应用开发### 4.1 经典-量子工作流**混合工作流定义**:
python
from astra_workflow import HybridWorkflow, ClassicalStep, QuantumStep
def create_quantum_ml_workflow():
workflow = HybridWorkflow("quantum-ml-pipeline")
# 经典数据预处理
workflow.add_step(ClassicalStep(name="data-preprocessing",command="python preprocess.py --input ${input} --output ${output}",inputs=["raw_data.csv"],outputs=["processed_data.npy"],resources={"cpu": 4, "memory": "8G"})
)# 量子特征提取
workflow.add_step(QuantumStep(name="quantum-feature-extraction",circuit=create_feature_map_circuit(),inputs=["processed_data.npy"],outputs=["quantum_features.npy"],shots=5000,error_mitigation=True)
)# 经典模型训练
workflow.add_step(ClassicalStep(name="model-training",command="python train_model.py --features ${input} --model ${output}",inputs=["quantum_features.npy"],outputs=["trained_model.pkl"],resources={"gpu": 1, "memory": "16G"})
)return workflow
### 4.2 自定义算法集成**集成自定义经典算法**:
python
from astra_integration import AlgorithmRegistry
@AlgorithmRegistry.register("my-custom-algorithm")
class MyCustomAlgorithm:
def init(self, config: Dict):
self.config = config
self.model = self.load_model()
def load_model(self):"""加载预训练模型"""# 实现模型加载逻辑passdef preprocess(self, input_data):"""数据预处理"""# 实现预处理逻辑return processed_datadef execute(self, input_data):"""执行算法"""processed = self.preprocess(input_data)result = self.model.predict(processed)return self.postprocess(result)def postprocess(self, result):"""结果后处理"""# 实现后处理逻辑return final_result
在工作流中使用
workflow.add_step(
ClassicalStep(
name="custom-algorithm",
algorithm="my-custom-algorithm",
inputs=["input_data.npy"],
outputs=["result.npy"],
config={"param1": "value1"}
)
)
## 5. 测试与调试### 5.1 单元测试**量子电路测试**:
python
import pytest
from astra_quantum import QuantumCircuit
from astra_test import QuantumTestUtils
class TestQuantumCircuits:
def test_bell_state_circuit(self):
"""测试Bell态电路"""
circuit = create_bell_state_circuit()
# 模拟执行
simulator = QuantumTestUtils.get_simulator()
result = simulator.run(circuit, shots=1000)# 验证Bell态分布
counts = result.get_counts()
assert abs(counts.get('00', 0) - 500) < 50 # 允许10%误差
assert abs(counts.get('11', 0) - 500) < 50def test_grover_algorithm(self):
"""测试Grover算法"""
grover = MyGroverSearch(num_qubits=3)
result = grover.run(shots=1000)# 验证找到目标状态
assert result['101'] > 200 # 应该显著高于随机
@pytest.mark.quantum_hardware
def test_hardware_execution():
"""量子硬件测试(需要真实硬件)"""
circuit = QuantumCircuit(2)
circuit.h(0)
circuit.cx(0, 1)
# 在真实硬件上运行
result = circuit.run_on_hardware(backend="ibmq_lima",shots=1000
)assert result.is_successful()
### 5.2 集成测试**混合工作流测试**:
python
from astra_test import IntegrationTestRunner
class TestHybridWorkflows(IntegrationTestRunner):
def test_quantum_ml_pipeline(self):
"""测试量子ML工作流"""
workflow = create_quantum_ml_workflow()
# 执行完整工作流
result = self.run_workflow(workflow,inputs={"raw_data.csv": test_data},timeout=300 # 5分钟超时
)# 验证输出
assert result.outputs["trained_model.pkl"] is not None
assert result.metrics["accuracy"] > 0.8def test_error_handling(self):
"""测试错误处理"""
with self.assertRaises(QuantumExecutionError):workflow = create_faulty_workflow()self.run_workflow(workflow)
## 6. 性能优化### 6.1 量子电路优化**电路优化技术**:
python
from astra_optimization import CircuitOptimizer
def optimize_quantum_circuit(circuit):
"""优化量子电路"""
optimizer = CircuitOptimizer()
# 应用多种优化策略
optimized = optimizer.optimize(circuit,strategies=["gate_cancellation", # 门取消"gate_combination", # 门合并"qubit_mapping", # 量子比特映射优化"pulse_optimization", # 脉冲优化],target_backend="ibmq_montreal",optimization_level=3
)return optimized
性能分析
original_depth = circuit.depth()
optimized_depth = optimized_circuit.depth()
print(f"电路深度减少: {original_depth} -> {optimized_depth}")
### 6.2 混合计算优化**资源分配优化**:
python
from astra_optimization import ResourceOptimizer
def optimize_resource_allocation(workflow):
"""优化工作流资源分配"""
optimizer = ResourceOptimizer()
# 分析工作流特征
analysis = optimizer.analyze_workflow(workflow)# 优化资源分配
optimized = optimizer.optimize_resources(workflow,constraints={"max_quantum_time": "1h","max_classical_cost": "$10","total_time_limit": "2h"},objective="minimize_cost" # minimize_time or balance
)return optimized
## 7. 贡献指南### 7.1 代码提交规范**提交信息格式**:
类型(范围): 简要描述
详细描述(可选)
相关Issue: #123
**类型说明**:
- `feat`: 新功能
- `fix`: bug修复
- `docs`: 文档更新
- `style`: 代码格式调整
- `refactor`: 代码重构
- `test`: 测试相关
- `chore`: 构建或辅助工具变动**示例**:
feat(quantum): 添加Grover算法实现
实现了标准Grover搜索算法,支持自定义Oracle和扩散操作
添加了相应的单元测试和示例代码
相关Issue: #45
### 7.2 Pull Request流程1. **Fork仓库**并创建特性分支
2. **实现功能**并添加测试
3. **运行测试**确保通过
4. **更新文档**反映变更
5. **提交PR**到develop分支
6. **代码审查**和CI测试
7. **合并到主分支**### 7.3 测试要求**测试覆盖率要求**:
bash
运行测试并检查覆盖率
pytest --cov=astra_quantum --cov-report=html
覆盖率要求
-
总体覆盖率 >= 85%
-
新代码覆盖率 >= 90%
-
关键模块覆盖率 >= 95%
**代码质量检查**:
bash
运行代码检查
flake8 src/ --max-line-length=120 --ignore=E203,W503
black --check src/
mypy src/
---**文档版本**: 1.0
**最后更新**: 2024-03-20
**维护者**: AstraOS 开发团队
由于篇幅限制,我先提供这两个核心文档的详细内容。这些文档已经具备了完整的结构和详细的内容,涵盖了用户操作和开发者的各个方面。如果需要继续编写其他文档(API参考文档、安全规范手册等),请告诉我,我会继续完成。
