当前位置: 首页 > news >正文

自己建设网站容易吗哪个网站做图片外链

自己建设网站容易吗,哪个网站做图片外链,不能用于制作网页,带后台的网站开发运营成本自回归模型(Autoregressive Model, AR)详解 自回归模型(Autoregressive Model, AR)是一种在时间序列分析和信号处理领域被广泛采用的统计模型,依赖过去观测值来预测当前与未来值。本篇概述将力求“少分点”且结合更详…

自回归模型(Autoregressive Model, AR)详解

自回归模型(Autoregressive Model, AR)是一种在时间序列分析和信号处理领域被广泛采用的统计模型,依赖过去观测值来预测当前与未来值。本篇概述将力求“少分点”且结合更详细的数学推导,为读者提供对AR模型的全局认识与实践思路。


1. 自回归模型简介

概念:AR模型假设当前时刻的序列值可以表示为过去若干时刻观测值的线性组合,以及一个随机误差项(通常是白噪声)。
应用:在经济、金融、工业、物理、生物医学等领域,用于预测或分析时间序列特性,如股票价格波动、气象数据、生理信号等。

简要形式:在 AR( p p p) 模型中,
x t = c + ∑ k = 1 p ϕ k x t − k + e t , x_t = c \;+\; \sum_{k=1}^p \phi_k \, x_{t-k} \;+\; e_t, xt=c+k=1pϕkxtk+et,
其中 ϕ k \phi_k ϕk 是回归系数, c c c 是常数项(可选), e t e_t et 是白噪声误差。


2. AR模型的数学表达

2.1 线性方程

若序列均值已去除(零均值情形):
x t = ∑ k = 1 p ϕ k x t − k + e t . x_t \;=\; \sum_{k=1}^p \phi_k\, x_{t-k} + e_t. xt=k=1pϕkxtk+et.
上式反映 t t t时刻的 x t x_t xt主要依赖前 p p p个滞后值。

2.2 矩阵形式

N N N个观测( t = p + 1 … N t=p+1 \ldots N t=p+1N):
( x p + 1 x p + 2 ⋮ x N ) = ( x p x p − 1 … x 1 x p + 1 x p … x 2 ⋮ ⋮ ⋱ ⋮ x N − 1 x N − 2 … x N − p ) ( ϕ 1 ϕ 2 ⋮ ϕ p ) + ( e p + 1 e p + 2 ⋮ e N ) . \begin{pmatrix} x_{p+1} \\ x_{p+2} \\ \vdots \\ x_N \end{pmatrix}= \begin{pmatrix} x_p & x_{p-1} & \dots & x_1 \\ x_{p+1} & x_p & \dots & x_2 \\ \vdots & \vdots & \ddots & \vdots \\ x_{N-1} & x_{N-2} & \dots & x_{N-p} \end{pmatrix} \begin{pmatrix} \phi_1\\ \phi_2\\ \vdots\\ \phi_p \end{pmatrix} + \begin{pmatrix} e_{p+1}\\ e_{p+2}\\ \vdots\\ e_N \end{pmatrix}. xp+1xp+2xN = xpxp+1xN1xp1xpxN2x1x2xNp ϕ1ϕ2ϕp + ep+1ep+2eN .


3. 模型阶数的选择

在AR( p p p)中, p p p越大,模型可能越灵活,但也易过拟合; p p p过小则可能漏掉重要的历史信息。常用准则:

  1. AIC (Akaike信息准则)
    A I C = 2 k − 2 ln ⁡ ( L ) , \mathrm{AIC} = 2k - 2 \ln(L), AIC=2k2ln(L),
    选取AIC最小的 p p p
  2. BIC (贝叶斯信息准则)
    B I C = k ln ⁡ ( N ) − 2 ln ⁡ ( L ) , \mathrm{BIC} = k \ln(N) - 2 \ln(L), BIC=kln(N)2ln(L),
    相比AIC对模型复杂度惩罚更强。
  3. 交叉验证:将数据分割为训练/验证集,对不同 p p p评估预测误差,选择最优。

4. 参数估计方法

4.1 Yule-Walker方程

基于自相关函数求解
R ϕ = r , R\,\boldsymbol{\phi} = \mathbf{r}, Rϕ=r,
其中 R R R是自相关矩阵, r \mathbf{r} r是自相关向量, ϕ \boldsymbol{\phi} ϕ为AR系数。
优点:计算相对直接;
缺点:对噪声敏感,且高阶时矩阵求逆可能不稳定。

4.2 最小二乘法 (OLS)

最小化以下误差平方和:
min ⁡ ϕ ∑ t = p + 1 N ( x t − ∑ k = 1 p ϕ k x t − k ) 2 . \min_{\boldsymbol{\phi}}\; \sum_{t=p+1}^N \Bigl(x_t - \sum_{k=1}^p \phi_k x_{t-k}\Bigr)^2. ϕmint=p+1N(xtk=1pϕkxtk)2.
优点:可灵活扩展;
缺点:易受异常值影响,且在高阶时求解较繁。

4.3 Burg方法

同时最小化前向与后向预测误差的平方和,通过递归更新反射系数( κ k \kappa_k κk)。
优点:对短数据或高频谱分辨率场景更稳定;
缺点:算法实现比Yule-Walker复杂。


5. 模型诊断与验证

(1) 残差分析

  • 检查残差是否呈白噪声,无显著自相关;
  • ACF/PACF图看是否有未建模依赖。

(2) Ljung-Box检验

  • 检验残差序列的自相关显著性,若显著则模型拟合不足。

(3) 信息准则

  • AIC、BIC继续做评估,观察是否可以降低阶数或是否欠拟合。

6. AR模型的应用

6.1 经济与金融

  • 股票价格预测:用AR模型对股票历史价格建模,短期内预测走势;
  • 宏观经济指标:GDP、通胀率等的时序分析与预测。

6.2 工程与物理

  • 信号滤波:对噪声信号进行AR拟合,构造滤波器;
  • 系统辨识:捕捉动力系统的演化规律,作故障检测与预测。

6.3 生物医学

  • 脑电(EEG)、心电(ECG)信号:通过AR分析检测异常节律;
  • 其他生理数据:评估病情波动与趋势。

7. AR模型的优势与局限

优势

  1. 结构简单,参数易解释;
  2. 适合平稳时序的短期预测;
  3. 通用性广,易扩展到ARMA/ARIMA。

局限

  1. 默认线性关系,难处理非线性;
  2. 高阶时参数不稳定,数据需求多;
  3. 对异常值和噪声敏感;
  4. 阶数选择依赖多准则和试验。

8. 示例代码

示例使用statsmodels库演示AR(2)的拟合与预测。

import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.tsa.ar_model import AutoReg# 1) 生成AR(2)时间序列
np.random.seed(42)
N = 100
phi_true = [0.75, -0.25]
x = np.zeros(N)
noise = np.random.normal(0,1,N)
for i in range(2, N):x[i] = phi_true[0]*x[i-1] + phi_true[1]*x[i-2] + noise[i]# 2) 拟合AR(2)模型
model = AutoReg(x, lags=2, old_names=False)
result = model.fit()print("真实系数:", phi_true)
print("估计系数:", result.params)# 3) 预测
predict_start, predict_end = 2, N-1
pred_y = result.predict(start=predict_start, end=predict_end)# 4) 可视化
plt.figure(figsize=(10,6))
plt.plot(x, label='True Series')
plt.plot(range(predict_start, predict_end+1), pred_y, 'r--', label='AR Fitted')
plt.legend()
plt.title("AR(2) Fitting Example")
plt.show()

9. 总结

AR模型通过历史值的线性组合来预测当前与未来值,是时间序列分析的最基础方法之一。在经济、金融、工业、信号处理、医学等领域普遍应用,因其概念直观、实现便捷而备受青睐。然则其缺陷也不容忽视,包含对于非线性模式捕捉不足、易受噪声和异常值干扰、阶数选择与高阶时参数估计不稳定等。实际应用中常结合AIC/BIC或交叉验证决定最优阶数,并使用稳健估计或改进算法(如ARMA/ARIMA/GARCH等)适应更多复杂情形。

http://www.dtcms.com/a/594391.html

相关文章:

  • 分布式专题——50 电商项目仿京东商品搜索服务实战
  • 第三方应用软件提权之symantic pcanywhere提权
  • 科普:LLM领域中的“样本(sample)”、“指令(instruction)”和“提示词(prompt)”
  • 宁波网站运营优化系统推广营销方案
  • 【WIP】大模型运维中GPU机器介绍
  • 在家没事做建什么网站好joomla 网站建设教程
  • explorer.exe源代码分析之热键的注册和处理
  • 免费做网站通栏广告做企业网站哪家好
  • 后端开发CRUD实现
  • 4.忘记密码页测试用例
  • 怎么建设个网站做网站用啥软件
  • 凡科可以做淘宝客网站吗上海企业登记在线电子签名
  • 网站关键词优化代理山东临沂市需要建设网站的公司
  • Hello-Agents task1 智能体与语言模型基础
  • 做宣传手册的网站智慧团建网站登录忘记密码
  • 山西省建设监理协会官方网站外链代发免费
  • 区间|单调栈
  • 基于Springboot的电器商城管理系统
  • 做摄影网站的目的是什么意思wordpress创建角色
  • 公司网站设计开发公司注册域名阿里云
  • 强化学习3 Q-learning
  • 惠州制作公司网站pythone网站开发
  • 企业只有建立自己的网站平台广西麒铭建设有限公司网站
  • 使用gpio 的/sys 属性来模拟调试信号的操作
  • 专业网站建设公司兴田德润怎么样沈阳网站建设小工作室
  • 秦皇岛建设网站官网农产品跨境电商平台有哪些
  • 回溯专题之二叉树
  • 网站建设工具的种类aspnet网站开发实例项目
  • 怎样制造网站图片教程公司网站建设费用 知乎
  • Python 3.6.1 报错 “module ‘enum‘ has no attribute ‘IntFlag‘” 的真正原因与解决办法