当前位置: 首页 > news >正文

回收网站建设短网址生成器免费

回收网站建设,短网址生成器免费,优化大师,绍兴seo排名话不多说直接上图举例: 像在 ResNet 的 Bottleneck 结构 中,1x1 卷积 被放置在 3x3 卷积 的前后,这种设计有以下几个关键作用和优势: 1. 降低计算复杂度 问题:直接使用 3x3 卷积计算量较大,尤其是当输入和…

话不多说直接上图举例
ResNet网络结构图
像在 ResNet 的 Bottleneck 结构 中,1x1 卷积 被放置在 3x3 卷积 的前后,这种设计有以下几个关键作用和优势:


1. 降低计算复杂度

  • 问题:直接使用 3x3 卷积计算量较大,尤其是当输入和输出通道数较多时。
  • 解决方案
    • 在 3x3 卷积之前,使用 1x1 卷积将输入通道数减少(通常减少到原来的 1/4)。
    • 在 3x3 卷积之后,使用 1x1 卷积将通道数恢复到目标输出通道数。
  • 效果
    • 通过减少中间特征图的通道数,显著降低了 3x3 卷积的计算量。

2. 减少参数量

  • 问题:3x3 卷积的参数量与输入和输出通道数成正比,当通道数较多时,参数量会非常大。
  • 解决方案
    • 使用 1x1 卷积先减少通道数,再使用 3x3 卷积,最后恢复通道数。
  • 效果
    • 这种设计可以大幅减少参数量,从而降低模型的存储需求和过拟合风险。

3. 跨通道信息融合

  • 问题:3x3 卷积主要关注局部空间特征,对跨通道信息的融合能力有限。
  • 解决方案
    • 1x1 卷积可以在不改变空间尺寸的情况下,对通道维度进行线性组合,从而实现跨通道信息融合。
  • 效果
    • 增强了特征的表达能力。

4. 非线性增强

  • 问题:单纯的 3x3 卷积只能提取线性特征。
  • 解决方案
    • 在 1x1 卷积和 3x3 卷积之间加入非线性激活函数(如 ReLU)。
  • 效果
    • 引入了更多的非线性,增强了模型的表达能力。

5. Bottleneck 结构的具体设计

Bottleneck 结构通常由以下三部分组成:

  1. 1x1 卷积(降维)

    • 输入通道数: C i n C_{in} Cin
    • 输出通道数: C m i d = C i n / 4 C_{mid} = C_{in} / 4 Cmid=Cin/4
    • 作用:减少通道数,降低计算量。
  2. 3x3 卷积(空间特征提取)

    • 输入通道数: C m i d C_{mid} Cmid
    • 输出通道数: C m i d C_{mid} Cmid
    • 作用:提取局部空间特征。
  3. 1x1 卷积(升维)

    • 输入通道数: C m i d C_{mid} Cmid
    • 输出通道数: C o u t C_{out} Cout
    • 作用:恢复通道数,完成特征变换。

6. 计算量对比

假设:

  • 输入特征图尺寸: H × W × C i n H \times W \times C_{in} H×W×Cin
  • 输出特征图尺寸: H × W × C o u t H \times W \times C_{out} H×W×Cout
  • 3x3 卷积核尺寸: 3 × 3 × C i n × C o u t 3 \times 3 \times C_{in} \times C_{out} 3×3×Cin×Cout
  • Bottleneck 结构:
    • 第一个 1x1 卷积: 1 × 1 × C i n × C m i d 1 \times 1 \times C_{in} \times C_{mid} 1×1×Cin×Cmid
    • 3x3 卷积: 3 × 3 × C m i d × C m i d 3 \times 3 \times C_{mid} \times C_{mid} 3×3×Cmid×Cmid
    • 第二个 1x1 卷积: 1 × 1 × C m i d × C o u t 1 \times 1 \times C_{mid} \times C_{out} 1×1×Cmid×Cout

计算量对比

  • 直接使用 3x3 卷积的计算量:
    H × W × C i n × C o u t × 3 × 3 H \times W \times C_{in} \times C_{out} \times 3 \times 3 H×W×Cin×Cout×3×3
  • Bottleneck 结构的计算量:
    H × W × C i n × C m i d × 1 × 1 + H × W × C m i d × C m i d × 3 × 3 + H × W × C m i d × C o u t × 1 × 1 H \times W \times C_{in} \times C_{mid} \times 1 \times 1 + H \times W \times C_{mid} \times C_{mid} \times 3 \times 3 + H \times W \times C_{mid} \times C_{out} \times 1 \times 1 H×W×Cin×Cmid×1×1+H×W×Cmid×Cmid×3×3+H×W×Cmid×Cout×1×1
    通常 C m i d = C i n / 4 C_{mid} = C_{in} / 4 Cmid=Cin/4,因此 Bottleneck 结构的计算量远小于直接使用 3x3 卷积。

7. 总结

Bottleneck 结构中 1x1 卷积的作用:

  1. 降低计算复杂度和参数量
  2. 实现跨通道信息融合
  3. 增强非线性表达能力

这种设计使得 ResNet 可以更高效地训练更深的网络,同时保持较强的特征提取能力。

http://www.dtcms.com/a/589239.html

相关文章:

  • Servlet 的 URLPattern配置
  • 传奇购买域名做网站一个网站的渠道网络建设
  • MATLAB中显示X、Y、Z三个方向信号的时频特征,使用时频分析方法
  • 构建AI智能体:八十九、Encoder-only与Decoder-only模型架构:基于ModelScope小模型的实践解析
  • SpringMVC快速入门
  • CPU亲和性深度实践:从基础原理到Intel大小核架构优化
  • 北京网站排名seo深圳正规网站建设服务
  • 【大模型学习4】大语言模型(LLM)详解
  • 扩频通信技术详解
  • 哈特曼波前传感器zemax仿真与人眼像差模拟
  • 进入职场第二课—融入
  • 【数论】中国剩余定理(CRT) 扩展中国剩余定理(EXCRT)
  • 【JVM】JVM内存结构
  • 【Vue 功能总结】Vue 注册功能实现:从校验到 API 封装
  • 站长工具收录查询网站建设培训 店
  • 建设家具网站的目的及功能定位做网站月入7000
  • 链表算法---基本算法操作(go语言版)
  • 【开题答辩全过程】以 基于SpringBoot房源出租信息系统的设计与实现为例,包含答辩的问题和答案
  • 解锁MIME:Qt中的数据传输密码
  • 【Go 与云原生】让一个 Go 项目脱离原生的操作系统——我们开始使用 Docker 制造云容器进行时
  • 大语言模型学习之路(一)
  • 网页设计教程网页设计培训福州关键词优化平台
  • GPIO中断编程
  • 手机和pc合一的网站云南集优科技网站
  • 14.大语言模型微调语料构建
  • Docker 40个自动化管理脚本
  • 国外html5网站模版网站建设代码流程
  • 基于多智能体技术的码头车辆最快行驶路径方案重构
  • 网站备案空壳制作微信网站
  • Java119 反射使用