当前位置: 首页 > news >正文

深度血虚:Django水果检测识别系统 CNN卷积神经网络算法 python语言 计算机 大数据✅

博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立软件开发工作室,专注于计算机相关专业项目实战6年之久,累计开发项目作品上万套。凭借丰富的经验与专业实力,已帮助成千上万的学生顺利毕业,选择我们,就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅

点击查看作者主页,了解更多项目!

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、毕业设计:2026年计算机专业毕业设计选题汇总(建议收藏)✅

2、最全计算机专业毕业设计选题大全(建议收藏)✅

1、项目介绍

技术栈:
python语言、django框架、神经网络、CNN卷积神经网络算法、后台管理

2、项目界面

(1)首页

在这里插入图片描述

(2)上传图片检测识别

在这里插入图片描述

(3)上传图片检测识别
在这里插入图片描述

(4)后台管理
在这里插入图片描述

(5)登录

在这里插入图片描述

3、项目说明

1、关键词:
Python语言、TensorFlow、卷积神经网络CNN算法、PyQt5界面、Django框架、深度学习
包含:训练预测代码、数据集、PyQt5界面+Django框架网页界面
2、训练预测文件夹中有训练代码以及数据集
3、carnum_check是Django网页版 qt_check是QT版
4、版本说明:
TensorFlow用最新版2.11.0 、 django使用最新版4.1.7、pyqt5使用最新版
5、模型: 25轮迭代1万多张图片

水果识别系统,通过机器学习库tensorflow作为模型构建框架,使用CNN卷积神经网络构建模型,并通过对数据集的处理划分测试集和训练集,通过多轮迭代得到训练好的模型,再将模型进行封装,并开发一个WEB界面系统用于用户的操作,最后实现用户在WEB页面中输入一张水果图片,系统以弹窗的形式显示该水果的信息(地区汉字、字母、数字)。同时用户输入的图片、预测的结果、操作的时间都会保存在数据库中,并实现管理员在后台管理系统中可以动态查看这些信息。
下面将主要说明本系统各设计功能模块的实现。其中包括系统环境配置,系统运行界面、功能模块关系以及系统运行流程图等,详细介绍本系统实现过程。

4、核心代码

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout,BatchNormalization,Activation# 加载预训练模型
base_model = keras.applications.ResNet50(weights='imagenet', include_top=False, input_shape=(img_width,img_height,3))for layer in base_model.layers:layer.trainable = True# Add layers at the end
X = base_model.output
X = Flatten()(X)X = Dense(512, kernel_initializer='he_uniform')(X)
#X = Dropout(0.5)(X)
X = BatchNormalization()(X)
X = Activation('relu')(X)X = Dense(16, kernel_initializer='he_uniform')(X)
#X = Dropout(0.5)(X)
X = BatchNormalization()(X)
X = Activation('relu')(X)output = Dense(len(class_names), activation='softmax')(X)model = Model(inputs=base_model.input, outputs=output)import tensorflow as tfmodel = tf.keras.models.load_model('model.h5')
import numpy as npclass_names =  ['圣女果', '梨', '芒果', '苹果', '香蕉']
def load_and_preprocess_image(path):image = tf.io.read_file(path)image = tf.image.decode_jpeg(image, channels=3)image = tf.image.resize(image, [224, 224])image = tf.cast(image, tf.float32)image = image/255.0  # normalize to [0,1] rangereturn imagetest_img = './dataset/梨/tim9.jpeg'
test_tensor = load_and_preprocess_image(test_img)
test_tensor = tf.expand_dims(test_tensor, axis=0)
pred = model.predict(test_tensor)
pred_id = int(np.argmax(pred))
pred_name = class_names[pred_id]
print("预测结果:{}".format(pred_name))
print("预测ID:{}".format(pred_id))

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目编程以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

5、源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

http://www.dtcms.com/a/585200.html

相关文章:

  • 郑州h5网站建设信息流推广
  • Git-新建分支并推送远程仓
  • 团关系转接网站建设免费psd模板素材
  • 永磁同步电机MTPA控制详解:从理论到实践的全方位指南
  • 【GORM(3)】Go的跨时代ORM框架!—— 数据库连接、配置参数;本文从0开始教会如何配置GORM的数据库
  • AIStarter 服务器版 PanelAI 开源+早鸟票 抢商业永久授权
  • 【项目】pyqt5基于python的照片整蛊项目
  • 深入理解Java堆栈:从原理到面试实战
  • MySQL快速入门——基本查询(下)
  • PyTorch深度学习进阶(二)(批量归一化)
  • 基于字符串的专项实验
  • CPO-SVM回归 基于冠豪猪优化算法支持向量机的多变量回归预测 (多输入单输出)Matlab
  • 飞凌嵌入式ElfBoard-标准IO接口之关闭文件
  • Rust 练习册 :Prime Factors与质因数分解
  • 12380网站开发apache wordpress rewrite
  • CSS - transition 过渡属性及使用方法(示例代码)
  • web网页开发,在线%考试管理%系统,基于Idea,vscode,html,css,vue,java,maven,springboot,mysql
  • 2025年北京海淀区中小学生信息学竞赛第一赛段试题(附答案)
  • Linux 基础开发工具入门:软件包管理器的全方位实操指南
  • 金仓数据库用户权限隔离:从功能兼容到安全增强的技术演进
  • shell(4)--shell脚本中的循环:(if循环,for,while,until)和退出循环(continue,break, exit)
  • IDEA 软件下载 + 安装 | 操作步骤
  • seo建站推广泉州建站软件
  • HarmonyOS 诗词填空游戏开发实战教程(非AI生成 提供源代码和演示视频)
  • 【期末网页设计作业】HTML+CSS+JavaScript 蜡笔小新 动漫主题网站设计与实现(附源码)
  • 柳州建站衣联网和一起做网站。哪家强
  • 深入解析CFS虚拟运行时间:Linux公平调度的核心引擎
  • cdr做网站流程哪家公司做网站结算好
  • 专业课复习计划
  • SQL50+Hot100系列(11.8)