当前位置: 首页 > news >正文

123883网站网页导航视频网站在线制作教程

123883网站,网页导航视频网站在线制作教程,沧州工商联网站建设,网上接设计单在哪里接文章目录1、前言2、目标3、安装RKNN-ToolKit-lite23.1、安装环境3.2、安装RKNN-ToolKit-lite23.3、验证4、完整的测试程序5、运行测试程序6、程序拆解7、总结1、前言 本文仅记录本人学习过程,不具备教学指导意义。 2、目标 之前提到过,RKNN-Toolkit2-…

文章目录

  • 1、前言
  • 2、目标
  • 3、安装RKNN-ToolKit-lite2
    • 3.1、安装环境
    • 3.2、安装RKNN-ToolKit-lite2
    • 3.3、验证
  • 4、完整的测试程序
  • 5、运行测试程序
  • 6、程序拆解
  • 7、总结

1、前言

本文仅记录本人学习过程,不具备教学指导意义。

2、目标

之前提到过,RKNN-Toolkit2-Lite2RKNN-Toolkit2的阉割版,只保留了推理功能,可以直接运行在板卡上。本文目标将下载安装rknn-toolkit-lite2,使用野火提供的示例程序,体验 rknn-toolkit-lite2 在板卡端推理。

3、安装RKNN-ToolKit-lite2

这里使用的是ubuntu系统的板卡,以下命令都是在板卡端执行。

3.1、安装环境

#安装python工具,安装相关依赖和软件包等
sudo apt update
sudo apt-get install python3-dev python3-pip gcc
sudo apt install -y python3-opencv python3-numpy python3-setuptools

3.2、安装RKNN-ToolKit-lite2

# 获取 RKNN-ToolKit-lite2 工程文件
# 可以官网获取:https://github.com/airockchip/rknn-toolkit2/tree/master/rknn-toolkit-lite2
# 这里使用野火提供的
git clone https://gitee.com/LubanCat/lubancat_ai_manual_code.git# 安装 RKNN-ToolKit-lite2 软件工具包
# 我的python版本是3.8
pip3 install packages/rknn_toolkit_lite2-1.5.0-cp38-cp38-linux_aarch64.whl

3.3、验证

root@lubancat:~/lubancat_ai_manual_code/dev_env/rknn_toolkit_lite2# python3
Python 3.8.10 (default, Mar 18 2025, 20:04:55)
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from rknnlite.api import RKNNLite
>>>

4、完整的测试程序

import urllib
import time
import sys
import numpy as np
import cv2
import platform
from rknnlite.api import RKNNLiteRK3566_RK3568_RKNN_MODEL = 'yolov5s_for_rk3566_rk3568.rknn'
RK3588_RKNN_MODEL = 'yolov5s_for_rk3588.rknn'
RK3562_RKNN_MODEL = 'yolov5s_for_rk3562.rknn'
IMG_PATH = './bus.jpg'OBJ_THRESH = 0.25
NMS_THRESH = 0.45
IMG_SIZE = 640CLASSES = ("person", "bicycle", "car", "motorbike ", "aeroplane ", "bus ", "train", "truck ", "boat", "traffic light","fire hydrant", "stop sign ", "parking meter", "bench", "bird", "cat", "dog ", "horse ", "sheep", "cow", "elephant","bear", "zebra ", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite","baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife ","spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza ", "donut", "cake", "chair", "sofa","pottedplant", "bed", "diningtable", "toilet ", "tvmonitor", "laptop	", "mouse	", "remote ", "keyboard ", "cell phone", "microwave ","oven ", "toaster", "sink", "refrigerator ", "book", "clock", "vase", "scissors ", "teddy bear ", "hair drier", "toothbrush ")# decice tree for rk356x/rk3588
DEVICE_COMPATIBLE_NODE = '/proc/device-tree/compatible'def get_host():# get platform and device typesystem = platform.system()machine = platform.machine()os_machine = system + '-' + machineif os_machine == 'Linux-aarch64':try:with open(DEVICE_COMPATIBLE_NODE) as f:device_compatible_str = f.read()if 'rk3588' in device_compatible_str:host = 'RK3588'elif 'rk3562' in device_compatible_str:host = 'RK3562'else:host = 'RK3566_RK3568'except IOError:print('Read device node {} failed.'.format(DEVICE_COMPATIBLE_NODE))exit(-1)else:host = os_machinereturn hostdef sigmoid(x):return 1 / (1 + np.exp(-x))def xywh2xyxy(x):# Convert [x, y, w, h] to [x1, y1, x2, y2]y = np.copy(x)y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left xy[:, 1] = x[:, 1] - x[:, 3] / 2  # top left yy[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right xy[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right yreturn ydef process(input, mask, anchors):anchors = [anchors[i] for i in mask]grid_h, grid_w = map(int, input.shape[0:2])box_confidence = sigmoid(input[..., 4])box_confidence = np.expand_dims(box_confidence, axis=-1)box_class_probs = sigmoid(input[..., 5:])box_xy = sigmoid(input[..., :2])*2 - 0.5col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)grid = np.concatenate((col, row), axis=-1)box_xy += gridbox_xy *= int(IMG_SIZE/grid_h)box_wh = pow(sigmoid(input[..., 2:4])*2, 2)box_wh = box_wh * anchorsbox = np.concatenate((box_xy, box_wh), axis=-1)return box, box_confidence, box_class_probsdef filter_boxes(boxes, box_confidences, box_class_probs):"""Filter boxes with box threshold. It's a bit different with origin yolov5 post process!# Argumentsboxes: ndarray, boxes of objects.box_confidences: ndarray, confidences of objects.box_class_probs: ndarray, class_probs of objects.# Returnsboxes: ndarray, filtered boxes.classes: ndarray, classes for boxes.scores: ndarray, scores for boxes."""boxes = boxes.reshape(-1, 4)box_confidences = box_confidences.reshape(-1)box_class_probs = box_class_probs.reshape(-1, box_class_probs.shape[-1])_box_pos = np.where(box_confidences >= OBJ_THRESH)boxes = boxes[_box_pos]box_confidences = box_confidences[_box_pos]box_class_probs = box_class_probs[_box_pos]class_max_score = np.max(box_class_probs, axis=-1)classes = np.argmax(box_class_probs, axis=-1)_class_pos = np.where(class_max_score >= OBJ_THRESH)boxes = boxes[_class_pos]classes = classes[_class_pos]scores = (class_max_score* box_confidences)[_class_pos]return boxes, classes, scoresdef nms_boxes(boxes, scores):"""Suppress non-maximal boxes.# Argumentsboxes: ndarray, boxes of objects.scores: ndarray, scores of objects.# Returnskeep: ndarray, index of effective boxes."""x = boxes[:, 0]y = boxes[:, 1]w = boxes[:, 2] - boxes[:, 0]h = boxes[:, 3] - boxes[:, 1]areas = w * horder = scores.argsort()[::-1]keep = []while order.size > 0:i = order[0]keep.append(i)xx1 = np.maximum(x[i], x[order[1:]])yy1 = np.maximum(y[i], y[order[1:]])xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)inter = w1 * h1ovr = inter / (areas[i] + areas[order[1:]] - inter)inds = np.where(ovr <= NMS_THRESH)[0]order = order[inds + 1]keep = np.array(keep)return keepdef yolov5_post_process(input_data):masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],[59, 119], [116, 90], [156, 198], [373, 326]]boxes, classes, scores = [], [], []for input, mask in zip(input_data, masks):b, c, s = process(input, mask, anchors)b, c, s = filter_boxes(b, c, s)boxes.append(b)classes.append(c)scores.append(s)boxes = np.concatenate(boxes)boxes = xywh2xyxy(boxes)classes = np.concatenate(classes)scores = np.concatenate(scores)nboxes, nclasses, nscores = [], [], []for c in set(classes):inds = np.where(classes == c)b = boxes[inds]c = classes[inds]s = scores[inds]keep = nms_boxes(b, s)nboxes.append(b[keep])nclasses.append(c[keep])nscores.append(s[keep])if not nclasses and not nscores:return None, None, Noneboxes = np.concatenate(nboxes)classes = np.concatenate(nclasses)scores = np.concatenate(nscores)return boxes, classes, scoresdef draw(image, boxes, scores, classes):"""Draw the boxes on the image.# Argument:image: original image.boxes: ndarray, boxes of objects.classes: ndarray, classes of objects.scores: ndarray, scores of objects.all_classes: all classes name."""for box, score, cl in zip(boxes, scores, classes):top, left, right, bottom = boxprint('class: {}, score: {}'.format(CLASSES[cl], score))print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))top = int(top)left = int(left)right = int(right)bottom = int(bottom)cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),(top, left - 6),cv2.FONT_HERSHEY_SIMPLEX,0.6, (0, 0, 255), 2)def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):# Resize and pad image while meeting stride-multiple constraintsshape = im.shape[:2]  # current shape [height, width]if isinstance(new_shape, int):new_shape = (new_shape, new_shape)# Scale ratio (new / old)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])# Compute paddingratio = r, r  # width, height ratiosnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh paddingdw /= 2  # divide padding into 2 sidesdh /= 2if shape[::-1] != new_unpad:  # resizeim = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))left, right = int(round(dw - 0.1)), int(round(dw + 0.1))im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add borderreturn im, ratio, (dw, dh)if __name__ == '__main__':host_name = get_host()if host_name == 'RK3566_RK3568':rknn_model = RK3566_RK3568_RKNN_MODELelif host_name == 'RK3562':rknn_model = RK3562_RKNN_MODELelif host_name == 'RK3588':rknn_model = RK3588_RKNN_MODELelse:print("This demo cannot run on the current platform: {}".format(host_name))exit(-1)# Create RKNN objectrknn_lite = RKNNLite()# load RKNN modelprint('--> Load RKNN model')ret = rknn_lite.load_rknn(rknn_model)if ret != 0:print('Load RKNN model failed')exit(ret)print('done')# Init runtime environmentprint('--> Init runtime environment')# run on RK356x/RK3588 with Debian OS, do not need specify target.if host_name == 'RK3588':ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_0)else:ret = rknn_lite.init_runtime()if ret != 0:print('Init runtime environment failed!')exit(ret)print('done')# Set inputsimg = cv2.imread(IMG_PATH)#img, ratio, (dw, dh) = letterbox(img, new_shape=(IMG_SIZE, IMG_SIZE))img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))# Inferenceprint('--> Running model')outputs = rknn_lite.inference(inputs=[img])#np.save('./onnx_yolov5_0.npy', outputs[0])#np.save('./onnx_yolov5_1.npy', outputs[1])#np.save('./onnx_yolov5_2.npy', outputs[2])print('done')# post processinput0_data = outputs[0]input1_data = outputs[1]input2_data = outputs[2]input0_data = input0_data.reshape([3, -1]+list(input0_data.shape[-2:]))input1_data = input1_data.reshape([3, -1]+list(input1_data.shape[-2:]))input2_data = input2_data.reshape([3, -1]+list(input2_data.shape[-2:]))input_data = list()input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))boxes, classes, scores = yolov5_post_process(input_data)img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)if boxes is not None:draw(img_1, boxes, scores, classes)# show outputcv2.imwrite("out.jpg", img_1)#cv2.imshow("post process result", img_1)#cv2.waitKey(0)#cv2.destroyAllWindows()rknn_lite.release()

5、运行测试程序

# 板卡端执行
cd lubancat_ai_manual_code/dev_env/rknn_toolkit_lite2/examples/yolov5_inference
python3 test.py

查看最后生成的out.jpg:

6、程序拆解

  1. 创建rknnlite对象
rknn_lite = RKNNLite()
  1. 加载rknn模型
rknn_lite.load_rknn(rknn_model)
  1. 初始化运行环境
rknn_lite.init_runtime()
  1. 模型推理(Inference)
outputs = rknn.inference(inputs=[img])
  1. 后处理(Post-process)
# post process
input0_data = outputs[0]
input1_data = outputs[1]
input2_data = outputs[2]input0_data = input0_data.reshape([3, -1]+list(input0_data.shape[-2:]))
input1_data = input1_data.reshape([3, -1]+list(input1_data.shape[-2:]))
input2_data = input2_data.reshape([3, -1]+list(input2_data.shape[-2:]))input_data = list()
input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))
input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))
input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))boxes, classes, scores = yolov5_post_process(input_data)img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
if boxes is not None:draw(img_1, boxes, scores, classes)# show output
cv2.imwrite("out.jpg", img_1)
#cv2.imshow("post process result", img_1)
#cv2.waitKey(0)
#cv2.destroyAllWindows()

7、总结

参考文章:

https://doc.embedfire.com/linux/rk356x/Ai/zh/latest/lubancat_ai/env/toolkit_lite2.html#id3

http://www.dtcms.com/a/580465.html

相关文章:

  • 遵义网站建设网帮你wordpress登录验证
  • 网站链接设计深圳龙岗网络公司
  • 跑纸活做网站加速wordpress插件
  • 免费做英语卷子的网站定制工作服
  • 建设工程消防验收查询网站做网站建设给人销售
  • 域名做网站wordpress 广告管理
  • 网站被恶意仿站无锡网页制作报价
  • 福建电信网站备案wordpress的页面布局
  • 自己做网站名电子章违法吗体育类网站 设计
  • 什么是网站二级目录上海备案证查询网站查询网站查询系统
  • 文登区城乡建设和规划局网站中英网站源码下载
  • 怎么建网站赚钱好用的快速网站建设平台
  • 哪里网站建设p2p种子网站建设
  • 永嘉网站建设工作室wordpress对接卡盟
  • jsp购物网站开发 论文sem竞价推广代运营
  • 网站无法显示网页内容网站备案ip更换
  • 万网主机怎么上传网站能用网站做微信小程序
  • 免费建设手机网站品牌网站推广
  • 哈尔滨网站设计公司哪家更好在线代理网页服务器
  • 站长工具黄文章网站后台
  • 文库网站开发教程国外免实名域名
  • 做简历的什么客网站做字的网站
  • 做网站百度云网站设计高度
  • 网站建设花多少钱做电影网站赚钱的方法
  • 婚庆公司网站建设策划书.doc百度站长工具综合查询
  • 网站建设入固定资产工业产品设计结构图
  • 网站空间购买费用个人微信公众号怎么做微网站吗
  • 淘宝客网站开发教程公众号小程序二维码怎么生成
  • 短视频制作完成网站263云通信官方网站
  • 广东营销网站建设服务网站栏目设计