系统性学习C++-第八讲-vector类
系统性学习C++-第八讲-vector类
- 1. vector 的介绍及使用
- 1.1 vector 的介绍
- 1.2 vector 的使用
- 1.2.1 vector 的定义
- 1.2.2 vector iterator 的使用
- 1.2.3 vector 空间增长问题
- 1.2.3 vector 增删查改
- 1.2.4 vector 迭代器失效问题(重点)
- 1.2.5 vector 在 OJ 中的使用
- 2.vector 深度剖析及模拟实现
- 2.1 使用 memcpy 拷贝问题
- 2.2 动态二维数组理解
1. vector 的介绍及使用
1.1 vector 的介绍
vector 的文档介绍
使用 STL 的三个境界:能用,明理,能扩展 ,那么下面学习 vector ,我们也是按照这个方法去学习
1.2 vector 的使用
vector 学习时一定要学会查看文档:vector的文档介绍,vector 在实际中非常的重要,在实际中我们熟悉常见的接口就可以,
下面列出了哪些接口是要重点掌握的。
1.2.1 vector 的定义
| contructor 构造函数声明 | 接口说明 |
|---|---|
| vector() (重点) | 无参构造 |
| vector(size_type n, const value_type& val = value_type()) | 构造并初始化 n 个 val |
| vector (const vector& x); (重点) | 拷贝构造 |
| vector (InputIterator first, Inputlterator last); | 使用迭代器进行初始化构造 |
1.2.2 vector iterator 的使用
| iterator 的使用 | 接口说明 |
|---|---|
| begin + end (重点) | 获取第一个数据位置的 iterator/const_iterator, 获取最后一个数据的下一个位置的 iterator/const_iterator |
| rbegin + rend | 获取最后一个数据位置的 reverse_iterator,获取第一个数据前一个位置的 reverse_iterator |


1.2.3 vector 空间增长问题
| 容量空间 | 接口数量 |
|---|---|
| size | 获取数据个数 |
| capacity | 获取容量大小 |
| empty | 判断是否为空 |
| resize | 改变 vector 的 size |
| reserve | 改变 vector 的 capacity |
-
capacity的代码在 vs 和 g++ 下分别运行会发现,vs 下capacity是按 1.5 倍增长的,g++ 是按 2 倍增长的。
这个问题经常会考察,不要固化的认为,vector增容都是 2 倍,具体增长多少是根据具体的需求定义的。vs 是 PJ 版本 STL ,g++ 是 SGI版本 STL 。 -
reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问题。 -
resize在开空间的同时还会进行初始化,影响size。
// 测试vector的默认扩容机制
void TestVectorExpand()
{size_t sz;vector<int> v;sz = v.capacity();cout << "making v grow:\n";for (int i = 0; i < 100; ++i){v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}vs:运行结果:vs下使用的STL基本是按照1.5倍方式扩容
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 3
capacity changed: 4
capacity changed: 6
capacity changed: 9
capacity changed: 13
capacity changed: 19
capacity changed: 28
capacity changed: 42
capacity changed: 63
capacity changed: 94
capacity changed: 141g++运行结果:linux下使用的STL基本是按照2倍方式扩容
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 4
capacity changed: 8
capacity changed: 16
capacity changed: 32
capacity changed: 64
capacity changed: 128
// 如果已经确定vector中要存储元素大概个数,可以提前将空间设置足够
// 就可以避免边插入边扩容导致效率低下的问题了
void TestVectorExpandOP()
{vector<int> v;size_t sz = v.capacity();v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容cout << "making bar grow:\n";for (int i = 0; i < 100; ++i){v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}
1.2.3 vector 增删查改
| vector 增删查改 | 接口说明 |
|---|---|
| push_back | 尾插 |
| pop_back | 尾删 |
| find | 查找(这个是算法模块实现,不是 vector 的成员接口) |
| insert | 在 position 之前插入 val |
| erase | 删除 position 位置的数据 |
| swap | 交换两个 vector 的数据空间 |
| operator[] | 像数组一样访问 |
1.2.4 vector 迭代器失效问题(重点)
迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,
比如:vector 的迭代器就是原生态指针 T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,
而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)。
对于 vector 可能会导致其迭代器失效的操作有:
1. 会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、assign、push_back 等。
#include <iostream>
using namespace std;
#include <vector>
int main()
{vector<int> v{1,2,3,4,5,6};auto it = v.begin();// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容// v.resize(100, 8);// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变// v.reserve(100);// 插入元素期间,可能会引起扩容,而导致原空间被释放// v.insert(v.begin(), 0);// v.push_back(8);// 给vector重新赋值,可能会引起底层容量改变v.assign(100, 8);/*出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的空间,而引起代码运行时崩溃。解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新赋值即可。*/while(it != v.end()){cout<< *it << " " ;++it;}cout<<endl;return 0;
}
2. 指定位置元素的删除操作- erase
#include <iostream>
using namespace std;
#include <vector>
int main()
{int a[] = { 1, 2, 3, 4 };vector<int> v(a, a + sizeof(a) / sizeof(int));// 使用find查找3所在位置的iteratorvector<int>::iterator pos = find(v.begin(), v.end(), 3);// 删除pos位置的数据,导致pos迭代器失效。v.erase(pos);cout << *pos << endl; // 此处会导致非法访问return 0;
}
erase 删除 pos 位置元素后,pos 位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,
但是:如果 pos 刚好是最后一个元素,删完之后 pos 刚好是 end 的位置,而 end 位置是没有元素的,那么 pos 就失效了。
因此删除 vector 中任意位置上元素时,vs 就认为该位置迭代器失效了。
以下代码的功能是删除 vector 中所有的偶数,请问那个代码是正确的,为什么?
#include <iostream>
using namespace std;
#include <vector>int main()
{vector<int> v{ 1, 2, 3, 4 };auto it = v.begin();while (it != v.end()){if (*it % 2 == 0)v.erase(it);++it;}return 0;
}int main()
{vector<int> v{ 1, 2, 3, 4 };auto it = v.begin();while (it != v.end()){if (*it % 2 == 0)it = v.erase(it);else++it;}return 0;
}
3. 注意:Linux下,g++ 编译器对迭代器失效的检测并不是非常严格,处理也没有 vs 下极端。
// 1. 扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了
int main()
{vector<int> v{1,2,3,4,5};for(size_t i = 0; i < v.size(); ++i)cout << v[i] << " ";cout << endl;auto it = v.begin();cout << "扩容之前,vector的容量为: " << v.capacity() << endl;// 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效v.reserve(100);cout << "扩容之后,vector的容量为: " << v.capacity() << endl;// 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会// 虽然可能运行,但是输出的结果是不对的while(it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}程序输出:
1 2 3 4 5
扩容之前,vector的容量为: 5
扩容之后,vector的容量为: 100
0 2 3 4 5 409 1 2 3 4 5// 2. erase删除任意位置代码后,linux下迭代器并没有失效
// 因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的
#include <vector>
#include <algorithm>int main()
{vector<int> v{1,2,3,4,5};vector<int>::iterator it = find(v.begin(), v.end(), 3);v.erase(it);cout << *it << endl;while(it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}程序可以正常运行,并打印:
4
4 5// 3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end
// 此时迭代器是无效的,++it导致程序崩溃
int main()
{vector<int> v{1,2,3,4,5};// vector<int> v{1,2,3,4,5,6};auto it = v.begin();while(it != v.end()){if(*it % 2 == 0)v.erase(it);++it;}for(auto e : v)cout << e << " ";cout << endl;return 0;
}
========================================================
// 使用第一组数据时,程序可以运行
[sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11
[sly@VM-0-3-centos 20220114]$ ./a.out
1 3 5
=========================================================
// 使用第二组数据时,程序最终会崩溃
[sly@VM-0-3-centos 20220114]$ vim testVector.cpp
[sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11
[sly@VM-0-3-centos 20220114]$ ./a.out
Segmentation fault
从上述三个例子中可以看到:SGI STL中,迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不对,
如果 it 不在 begin 和 end 范围内,肯定会崩溃的。
4. 与 vector 类似,string 在插入 + 扩容操作 + erase 之后,迭代器也会失效
#include <string>
void TestString()
{string s("hello");auto it = s.begin();// 放开之后代码会崩溃,因为resize到20会string会进行扩容// 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了// 后序打印时,再访问it指向的空间程序就会崩溃//s.resize(20, '!');while (it != s.end()){cout << *it;++it;}cout << endl;it = s.begin();while (it != s.end()){it = s.erase(it);// 按照下面方式写,运行时程序会崩溃,因为erase(it)之后// it位置的迭代器就失效了// s.erase(it);++it;}
}
迭代器失效解决办法:在使用前,对迭代器重新赋值即可。
1.2.5 vector 在 OJ 中的使用
杨辉三角
class Solution {
public:vector<vector<int>> generate(int numRows) {vector<vector<int>> vv(numRows);for(int i = 0; i < numRows; i++){vv[i].resize(i+1, 1);}for(int i = 2; i < numRows; i++){for(int j = 1; j < i; j++){vv[i][j] = vv[i - 1][j - 1] + vv[i - 1][j];}}return vv;}
};
总结:通过上面的练习我们发现 vector 常用的接口更多是插入和遍历。遍历更喜欢用数组 operator[i] 的形式访问,因为这样便捷。
2.vector 深度剖析及模拟实现

2.1 使用 memcpy 拷贝问题
假设模拟实现的 vector 中的 reserve 接口中,使用 memcpy 进行的拷贝,以下代码会发生什么问题?\
int main()
{bite::vector<bite::string> v;v.push_back("1111");v.push_back("2222");v.push_back("3333");return 0;
}
问题分析:
-
memcpy是内存的二进制格式拷贝,将一段内存空间中内容原封不动的拷贝到另外一段内存空间中 -
如果拷贝的是自定义类型的元素,
memcpy既高效又不会出错,但如果拷贝的是自定义类型元素,并且自定义类型元素中涉及到资源管理时,就会出错,因为memcpy的拷贝实际是浅拷贝。


结论:如果对象中涉及到资源管理时,千万不能使用 memcpy 进行对象之间的拷贝,因为 memcpy 是浅拷贝,
否则可能会引起内存泄漏甚至程序崩溃。
2.2 动态二维数组理解
// 以杨慧三角的前n行为例:假设n为5
void test2vector(size_t n)
{// 使用vector定义二维数组vv,vv中的每个元素都是vector<int>bit::vector<bit::vector<int>> vv(n);// 将二维数组每一行中的vecotr<int>中的元素全部设置为1for (size_t i = 0; i < n; ++i)vv[i].resize(i + 1, 1);// 给杨慧三角出第一列和对角线的所有元素赋值for (int i = 2; i < n; ++i){for (int j = 1; j < i; ++j){vv[i][j] = vv[i - 1][j] + vv[i - 1][j - 1];}}
}
bit::vector<bit::vector<int>> vv(n); 构造一个 vv 动态二维数组,vv 中总共有 n 个元素,每个元素都是 vector 类型的,
每行没有包含任何元素,如果 n 为 5 时如下所示:

vv 中元素填充完成之后,如下图所示:

使用标准库中 vector 构建动态二维数组时与上图实际是一致的。
