当前位置: 首页 > news >正文

系统性学习C++-第八讲-vector类

系统性学习C++-第八讲-vector类

  • 1. vector 的介绍及使用
    • 1.1 vector 的介绍
    • 1.2 vector 的使用
      • 1.2.1 vector 的定义
      • 1.2.2 vector iterator 的使用
      • 1.2.3 vector 空间增长问题
      • 1.2.3 vector 增删查改
      • 1.2.4 vector 迭代器失效问题(重点)
      • 1.2.5 vector 在 OJ 中的使用
  • 2.vector 深度剖析及模拟实现
    • 2.1 使用 memcpy 拷贝问题
    • 2.2 动态二维数组理解

1. vector 的介绍及使用

1.1 vector 的介绍

vector 的文档介绍

使用 STL 的三个境界:能用,明理,能扩展 ,那么下面学习 vector ,我们也是按照这个方法去学习

1.2 vector 的使用

vector 学习时一定要学会查看文档:vector的文档介绍,vector 在实际中非常的重要,在实际中我们熟悉常见的接口就可以,

下面列出了哪些接口是要重点掌握的。

1.2.1 vector 的定义

contructor 构造函数声明接口说明
vector() (重点)无参构造
vector(size_type n, const value_type& val = value_type())构造并初始化 n 个 val
vector (const vector& x); (重点)拷贝构造
vector (InputIterator first, Inputlterator last);使用迭代器进行初始化构造

1.2.2 vector iterator 的使用

iterator 的使用接口说明
begin + end (重点)获取第一个数据位置的 iterator/const_iterator, 获取最后一个数据的下一个位置的 iterator/const_iterator
rbegin + rend获取最后一个数据位置的 reverse_iterator,获取第一个数据前一个位置的 reverse_iterator

在这里插入图片描述
在这里插入图片描述

1.2.3 vector 空间增长问题

容量空间接口数量
size获取数据个数
capacity获取容量大小
empty判断是否为空
resize改变 vector 的 size
reserve改变 vector 的 capacity
  • capacity 的代码在 vs 和 g++ 下分别运行会发现,vs 下 capacity 是按 1.5 倍增长的,g++ 是按 2 倍增长的。
    这个问题经常会考察,不要固化的认为,vector 增容都是 2 倍,具体增长多少是根据具体的需求定义的。vs 是 PJ 版本 STL ,g++ 是 SGI版本 STL 。

  • reserve 只负责开辟空间,如果确定知道需要用多少空间,reserve 可以缓解 vector 增容的代价缺陷问题。

  • resize 在开空间的同时还会进行初始化,影响 size

// 测试vector的默认扩容机制
void TestVectorExpand()
{size_t sz;vector<int> v;sz = v.capacity();cout << "making v grow:\n";for (int i = 0; i < 100; ++i){v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}vs:运行结果:vs下使用的STL基本是按照1.5倍方式扩容
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 3
capacity changed: 4
capacity changed: 6
capacity changed: 9
capacity changed: 13
capacity changed: 19
capacity changed: 28
capacity changed: 42
capacity changed: 63
capacity changed: 94
capacity changed: 141g++运行结果:linux下使用的STL基本是按照2倍方式扩容
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 4
capacity changed: 8
capacity changed: 16
capacity changed: 32
capacity changed: 64
capacity changed: 128
// 如果已经确定vector中要存储元素大概个数,可以提前将空间设置足够
// 就可以避免边插入边扩容导致效率低下的问题了
void TestVectorExpandOP()
{vector<int> v;size_t sz = v.capacity();v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容cout << "making bar grow:\n";for (int i = 0; i < 100; ++i){v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}

1.2.3 vector 增删查改

vector 增删查改接口说明
push_back尾插
pop_back尾删
find查找(这个是算法模块实现,不是 vector 的成员接口)
insert在 position 之前插入 val
erase删除 position 位置的数据
swap交换两个 vector 的数据空间
operator[]像数组一样访问

1.2.4 vector 迭代器失效问题(重点)

迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,

比如:vector 的迭代器就是原生态指针 T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,

而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)。

对于 vector 可能会导致其迭代器失效的操作有:

1. 会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、assign、push_back 等。

#include <iostream>
using namespace std;
#include <vector>
int main()
{vector<int> v{1,2,3,4,5,6};auto it = v.begin();// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容// v.resize(100, 8);// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变// v.reserve(100);// 插入元素期间,可能会引起扩容,而导致原空间被释放// v.insert(v.begin(), 0);// v.push_back(8);// 给vector重新赋值,可能会引起底层容量改变v.assign(100, 8);/*出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的空间,而引起代码运行时崩溃。解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新赋值即可。*/while(it != v.end()){cout<< *it << " " ;++it;}cout<<endl;return 0;
}

2. 指定位置元素的删除操作- erase

#include <iostream>
using namespace std;
#include <vector>
int main()
{int a[] = { 1, 2, 3, 4 };vector<int> v(a, a + sizeof(a) / sizeof(int));// 使用find查找3所在位置的iteratorvector<int>::iterator pos = find(v.begin(), v.end(), 3);// 删除pos位置的数据,导致pos迭代器失效。v.erase(pos);cout << *pos << endl; // 此处会导致非法访问return 0;
}

erase 删除 pos 位置元素后,pos 位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,

但是:如果 pos 刚好是最后一个元素,删完之后 pos 刚好是 end 的位置,而 end 位置是没有元素的,那么 pos 就失效了。

因此删除 vector 中任意位置上元素时,vs 就认为该位置迭代器失效了。

以下代码的功能是删除 vector 中所有的偶数,请问那个代码是正确的,为什么?

#include <iostream>
using namespace std;
#include <vector>int main()
{vector<int> v{ 1, 2, 3, 4 };auto it = v.begin();while (it != v.end()){if (*it % 2 == 0)v.erase(it);++it;}return 0;
}int main()
{vector<int> v{ 1, 2, 3, 4 };auto it = v.begin();while (it != v.end()){if (*it % 2 == 0)it = v.erase(it);else++it;}return 0;
}

3. 注意:Linux下,g++ 编译器对迭代器失效的检测并不是非常严格,处理也没有 vs 下极端。

// 1. 扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了
int main()
{vector<int> v{1,2,3,4,5};for(size_t i = 0; i < v.size(); ++i)cout << v[i] << " ";cout << endl;auto it = v.begin();cout << "扩容之前,vector的容量为: " << v.capacity() << endl;// 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效v.reserve(100);cout << "扩容之后,vector的容量为: " << v.capacity() << endl;// 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会// 虽然可能运行,但是输出的结果是不对的while(it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}程序输出:
1 2 3 4 5
扩容之前,vector的容量为: 5
扩容之后,vector的容量为: 100
0 2 3 4 5 409 1 2 3 4 5// 2. erase删除任意位置代码后,linux下迭代器并没有失效
// 因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的
#include <vector>
#include <algorithm>int main()
{vector<int> v{1,2,3,4,5};vector<int>::iterator it = find(v.begin(), v.end(), 3);v.erase(it);cout << *it << endl;while(it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}程序可以正常运行,并打印:
4
4 5// 3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end
// 此时迭代器是无效的,++it导致程序崩溃
int main()
{vector<int> v{1,2,3,4,5};// vector<int> v{1,2,3,4,5,6};auto it = v.begin();while(it != v.end()){if(*it % 2 == 0)v.erase(it);++it;}for(auto e : v)cout << e << " ";cout << endl;return 0;
}
========================================================
// 使用第一组数据时,程序可以运行
[sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11
[sly@VM-0-3-centos 20220114]$ ./a.out
1 3 5
=========================================================
// 使用第二组数据时,程序最终会崩溃
[sly@VM-0-3-centos 20220114]$ vim testVector.cpp
[sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11
[sly@VM-0-3-centos 20220114]$ ./a.out
Segmentation fault

从上述三个例子中可以看到:SGI STL中,迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不对,

如果 it 不在 beginend 范围内,肯定会崩溃的。

4. 与 vector 类似,string 在插入 + 扩容操作 + erase 之后,迭代器也会失效

#include <string>
void TestString()
{string s("hello");auto it = s.begin();// 放开之后代码会崩溃,因为resize到20会string会进行扩容// 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了// 后序打印时,再访问it指向的空间程序就会崩溃//s.resize(20, '!');while (it != s.end()){cout << *it;++it;}cout << endl;it = s.begin();while (it != s.end()){it = s.erase(it);// 按照下面方式写,运行时程序会崩溃,因为erase(it)之后// it位置的迭代器就失效了// s.erase(it);++it;}
}

迭代器失效解决办法:在使用前,对迭代器重新赋值即可。

1.2.5 vector 在 OJ 中的使用

杨辉三角

class Solution {
public:vector<vector<int>> generate(int numRows) {vector<vector<int>> vv(numRows);for(int i = 0; i < numRows; i++){vv[i].resize(i+1, 1);}for(int i = 2; i < numRows; i++){for(int j = 1; j < i; j++){vv[i][j] = vv[i - 1][j - 1] + vv[i - 1][j];}}return vv;}
};

总结:通过上面的练习我们发现 vector 常用的接口更多是插入和遍历。遍历更喜欢用数组 operator[i] 的形式访问,因为这样便捷。

2.vector 深度剖析及模拟实现

在这里插入图片描述

2.1 使用 memcpy 拷贝问题

假设模拟实现的 vector 中的 reserve 接口中,使用 memcpy 进行的拷贝,以下代码会发生什么问题?\

int main()
{bite::vector<bite::string> v;v.push_back("1111");v.push_back("2222");v.push_back("3333");return 0;
}

问题分析:

  1. memcpy 是内存的二进制格式拷贝,将一段内存空间中内容原封不动的拷贝到另外一段内存空间中

  2. 如果拷贝的是自定义类型的元素,memcpy 既高效又不会出错,但如果拷贝的是自定义类型元素,并且自定义类型元素中涉及到资源管理时,就会出错,因为 memcpy 的拷贝实际是浅拷贝。

在这里插入图片描述

在这里插入图片描述
结论:如果对象中涉及到资源管理时,千万不能使用 memcpy 进行对象之间的拷贝,因为 memcpy 是浅拷贝,

否则可能会引起内存泄漏甚至程序崩溃。

2.2 动态二维数组理解

// 以杨慧三角的前n行为例:假设n为5
void test2vector(size_t n)
{// 使用vector定义二维数组vv,vv中的每个元素都是vector<int>bit::vector<bit::vector<int>> vv(n);// 将二维数组每一行中的vecotr<int>中的元素全部设置为1for (size_t i = 0; i < n; ++i)vv[i].resize(i + 1, 1);// 给杨慧三角出第一列和对角线的所有元素赋值for (int i = 2; i < n; ++i){for (int j = 1; j < i; ++j){vv[i][j] = vv[i - 1][j] + vv[i - 1][j - 1];}}
}

bit::vector<bit::vector<int>> vv(n); 构造一个 vv 动态二维数组,vv 中总共有 n 个元素,每个元素都是 vector 类型的,

每行没有包含任何元素,如果 n 为 5 时如下所示:

在这里插入图片描述
vv 中元素填充完成之后,如下图所示:

在这里插入图片描述
使用标准库中 vector 构建动态二维数组时与上图实际是一致的。

http://www.dtcms.com/a/532348.html

相关文章:

  • 什么是Nginx?:掌握高性能 Web 服务器核心技术
  • 江西网站开发公司模板网婚纱
  • 快速搭建Docker私有仓库指南
  • 网站禁用右键wordpress mycred汉化
  • 音视频处理(二): 一文讲清楚音频处理流程:采样、压缩和播放
  • 基于单片机的篮球比赛计时与比分控制系统设计
  • C++容器set
  • 网站建设主机耗电量怎么写代码自己制作网站
  • 超越低功耗:TMS320C6000 DSP的能效架构设计与IoT节点部署实践
  • 西安网站开发工资首都之窗门户网站首页
  • 中药电商平台是什么?主要具有哪些创新特征与应用场景?
  • Python模块(Module)详解:从基础使用到工程化实践
  • DTD 属性详解
  • 随身WiFi助手
  • 安卓网络请求详解:Retrofit + OkHttp 高效通信方案
  • centos建设网站营销系统平台
  • 华为OD机试双机位A卷 - 统计差异值大于相似值二元组个数 (C++ Python JAVA JS GO)
  • bug:realsense-viewer 找不到已识别的设备
  • Mac安装VisualVM 2.2启动闪退
  • 在macOS上搭建C#集成开发环境指南
  • 郑州市城乡建设规划网站苏州园区两学一做网站
  • 音乐网站 模板手游app平台排行榜
  • vue通信加密解密完整方案实现
  • 大模型模板输出与优化技术指南
  • 2026蓝桥杯
  • 让我用一个非常通俗易懂的方式来解
  • 搞一个卖东西的网站怎么做婚庆网站开发计划书
  • 迅雷之家是迅雷做的网站吗学校网站建设的意义和应用
  • 织梦建站教程全集房山营销型网站制作开发
  • 非齐次方程解的结构与几何意义的探讨