当前位置: 首页 > news >正文

YOLOv8改进------------SPFF-LSKA

YOLOv8改进------------SPFF-LSKA

    • 1、LSAK.py代码
    • 2、添加YAML文件yolov8_SPPF_LSKA.yaml
    • 3、添加SPPF_LSKA代码
    • 4、ultralytics/nn/modules/__init__.py注册模块
    • 5、ultralytics/nn/tasks.py注册模块
    • 6、导入yaml文件训练

1、LSAK.py代码

论文
代码

LSKA.py添加到ultralytics/nn/modules
在这里插入图片描述

import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
 
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from timm.models.vision_transformer import _cfg
import math
 
class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
        self.dwconv = DWConv(hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
        self.drop = nn.Dropout(drop)
        self.apply(self._init_weights)
 
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
 
    def forward(self, x):
        x = self.fc1(x)
        x = self.dwconv(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x
 
 
 
 
class LSKA(nn.Module):
    def __init__(self, dim, k_size):
        super().__init__()
 
        self.k_size = k_size
 
        if k_size == 7:
            self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 3), stride=(1,1), padding=(0,(3-1)//2), groups=dim)
            self.conv0v = nn.Conv2d(dim, dim, kernel_size=(3, 1), stride=(1,1), padding=((3-1)//2,0), groups=dim)
            self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 3), stride=(1,1), padding=(0,2), groups=dim, dilation=2)
            self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(3, 1), stride=(1,1), padding=(2,0), groups=dim, dilation=2)
        elif k_size == 11:
            self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 3), stride=(1,1), padding=(0,(3-1)//2), groups=dim)
            self.conv0v = nn.Conv2d(dim, dim, kernel_size=(3, 1), stride=(1,1), padding=((3-1)//2,0), groups=dim)
            self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,4), groups=dim, dilation=2)
            self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=(4,0), groups=dim, dilation=2)
        elif k_size == 23:
            self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,(5-1)//2), groups=dim)
            self.conv0v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=((5-1)//2,0), groups=dim)
            self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 7), stride=(1,1), padding=(0,9), groups=dim, dilation=3)
            self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(7, 1), stride=(1,1), padding=(9,0), groups=dim, dilation=3)
        elif k_size == 35:
            self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,(5-1)//2), groups=dim)
            self.conv0v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=((5-1)//2,0), groups=dim)
            self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 11), stride=(1,1), padding=(0,15), groups=dim, dilation=3)
            self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(11, 1), stride=(1,1), padding=(15,0), groups=dim, dilation=3)
        elif k_size == 41:
            self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,(5-1)//2), groups=dim)
            self.conv0v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=((5-1)//2,0), groups=dim)
            self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 13), stride=(1,1), padding=(0,18), groups=dim, dilation=3)
            self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(13, 1), stride=(1,1), padding=(18,0), groups=dim, dilation=3)
        elif k_size == 53:
            self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,(5-1)//2), groups=dim)
            self.conv0v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=((5-1)//2,0), groups=dim)
            self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 17), stride=(1,1), padding=(0,24), groups=dim, dilation=3)
            self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(17, 1), stride=(1,1), padding=(24,0), groups=dim, dilation=3)
 
        self.conv1 = nn.Conv2d(dim, dim, 1)
 
 
    def forward(self, x):
        u = x.clone()
        attn = self.conv0h(x)
        attn = self.conv0v(attn)
        attn = self.conv_spatial_h(attn)
        attn = self.conv_spatial_v(attn)
        attn = self.conv1(attn)
        return u * attn
 
 
class Attention(nn.Module):
    def __init__(self, d_model, k_size):
        super().__init__()
 
        self.proj_1 = nn.Conv2d(d_model, d_model, 1)
        self.activation = nn.GELU()
        self.spatial_gating_unit = LSKA(d_model, k_size)
        self.proj_2 = nn.Conv2d(d_model, d_model, 1)
 
    def forward(self, x):
        shorcut = x.clone()
        x = self.proj_1(x)
        x = self.activation(x)
        x = self.spatial_gating_unit(x)
        x = self.proj_2(x)
        x = x + shorcut
        return x
 
 
class Block(nn.Module):
    def __init__(self, dim, k_size, mlp_ratio=4., drop=0.,drop_path=0., act_layer=nn.GELU):
        super().__init__()
        self.norm1 = nn.BatchNorm2d(dim)
        self.attn = Attention(dim, k_size)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
 
        self.norm2 = nn.BatchNorm2d(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        layer_scale_init_value = 1e-2
        self.layer_scale_1 = nn.Parameter(
            layer_scale_init_value * torch.ones((dim)), requires_grad=True)
        self.layer_scale_2 = nn.Parameter(
            layer_scale_init_value * torch.ones((dim)), requires_grad=True)
 
        self.apply(self._init_weights)
 
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
 
    def forward(self, x):
        x = x + self.drop_path(self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * self.attn(self.norm1(x)))
        x = x + self.drop_path(self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(self.norm2(x)))
        return x
 
 
class OverlapPatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """
 
    def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
        super().__init__()
        patch_size = to_2tuple(patch_size)
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
                              padding=(patch_size[0] // 2, patch_size[1] // 2))
        self.norm = nn.BatchNorm2d(embed_dim)
 
        self.apply(self._init_weights)
 
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
 
    def forward(self, x):
        x = self.proj(x)
        _, _, H, W = x.shape
        x = self.norm(x)
        return x, H, W
 
 
class VAN(nn.Module):
    def __init__(self, img_size=224, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
                mlp_ratios=[4, 4, 4, 4], drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
                 depths=[3, 4, 6, 3], num_stages=4, flag=False, k_size=7, pretrained_cfg=None):
        super().__init__()
        if flag == False:
            self.num_classes = num_classes
        self.depths = depths
        self.num_stages = num_stages
 
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
        cur = 0
 
        for i in range(num_stages):
            patch_embed = OverlapPatchEmbed(img_size=img_size if i == 0 else img_size // (2 ** (i + 1)),
                                            patch_size=7 if i == 0 else 3,
                                            stride=4 if i == 0 else 2,
                                            in_chans=in_chans if i == 0 else embed_dims[i - 1],
                                            embed_dim=embed_dims[i])
 
            block = nn.ModuleList([Block(
                dim=embed_dims[i], k_size=k_size, mlp_ratio=mlp_ratios[i], drop=drop_rate, drop_path=dpr[cur + j])
                for j in range(depths[i])])
            norm = norm_layer(embed_dims[i])
            cur += depths[i]
 
            setattr(self, f"patch_embed{i + 1}", patch_embed)
            setattr(self, f"block{i + 1}", block)
            setattr(self, f"norm{i + 1}", norm)
 
        # classification head
        self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
 
        self.apply(self._init_weights)
 
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
 
    def freeze_patch_emb(self):
        self.patch_embed1.requires_grad = False
 
    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'}  # has pos_embed may be better
 
    def get_classifier(self):
        return self.head
 
    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
 
    def forward_features(self, x):
        B = x.shape[0]
 
        for i in range(self.num_stages):
            patch_embed = getattr(self, f"patch_embed{i + 1}")
            block = getattr(self, f"block{i + 1}")
            norm = getattr(self, f"norm{i + 1}")
            x, H, W = patch_embed(x)
            for blk in block:
                x = blk(x)
            x = x.flatten(2).transpose(1, 2)
            x = norm(x)
            if i == self.num_stages - 1:
                x_feature_map = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
            if i != self.num_stages - 1:
                x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        return x_feature_map, x.mean(dim=1)
 
    def forward(self, x):
        _, x = self.forward_features(x)
        x = self.head(x)
 
        return x
 
 
class DWConv(nn.Module):
    def __init__(self, dim=768):
        super(DWConv, self).__init__()
        self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
 
    def forward(self, x):
        x = self.dwconv(x)
        return x
 
 
def _conv_filter(state_dict, patch_size=16):
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
    out_dict = {}
    for k, v in state_dict.items():
        if 'patch_embed.proj.weight' in k:
            v = v.reshape((v.shape[0], 3, patch_size, patch_size))
        out_dict[k] = v
 
    return out_dict
 
 
model_urls = {
    "van_tiny": "https://huggingface.co/Visual-Attention-Network/VAN-Tiny-original/resolve/main/van_tiny_754.pth.tar",
    "van_small": "https://huggingface.co/Visual-Attention-Network/VAN-Small-original/resolve/main/van_small_811.pth.tar",
    "van_base": "https://huggingface.co/Visual-Attention-Network/VAN-Base-original/resolve/main/van_base_828.pth.tar",
    "van_large": "https://huggingface.co/Visual-Attention-Network/VAN-Large-original/resolve/main/van_large_839.pth.tar",
}
 
 
def load_model_weights(model, arch, kwargs):
    url = model_urls[arch]
    checkpoint = torch.hub.load_state_dict_from_url(
        url=url, map_location="cpu", check_hash=True
    )
    strict = True
    if "num_classes" in kwargs and kwargs["num_classes"] != 1000:
        strict = False
        del checkpoint["state_dict"]["head.weight"]
        del checkpoint["state_dict"]["head.bias"]
    print('load model weights....')
    model.load_state_dict(checkpoint["state_dict"], strict=strict)
    return model
 
 
@register_model
def van_tiny(pretrained=False, **kwargs):
    model = VAN(
        embed_dims=[32, 64, 160, 256], mlp_ratios=[8, 8, 4, 4],
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 3, 5, 2],
        **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        model = load_model_weights(model, "van_tiny", kwargs)
    return model
 
 
@register_model
def van_small(pretrained=False, **kwargs):
    model = VAN(
        embed_dims=[64, 128, 320, 512], mlp_ratios=[8, 8, 4, 4],
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 4, 2],
        **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        model = load_model_weights(model, "van_small", kwargs)
    return model
 
@register_model
def van_base(pretrained=False, **kwargs):
    model = VAN(
        embed_dims=[64, 128, 320, 512], mlp_ratios=[8, 8, 4, 4],
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 3, 12, 3],
        **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        model = load_model_weights(model, "van_base", kwargs)
    return model

2、添加YAML文件yolov8_SPPF_LSKA.yaml

添加到v8配置文件中ultralytics/cfg/models/v8/yolov8_SPPF_LSKA.yaml
在这里插入图片描述

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 7  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF_LSKA, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3、添加SPPF_LSKA代码

(1)SPPF_LSKA代码添加到ultralytics/nn/modules/block.py
在这里插入图片描述

class SPPF_LSKA(nn.Module):
    """Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher."""
 
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
        self.lska = LSKA(c_ * 4, k_size=11)
 
    def forward(self, x):
        """Forward pass through Ghost Convolution block."""
        x = self.cv1(x)
        y1 = self.m(x)
        y2 = self.m(y1)
        return self.cv2(self.lska(torch.cat((x, y1, y2, self.m(y2)), 1)))

(2)block.py代码顶部__all__中添加’SPPF_LSKA’,并导入LSKA模块,添加时一定注意使用英文标点符号

'SPPF_LSKA'
from .LSKA import LSKA

在这里插入图片描述

4、ultralytics/nn/modules/init.py注册模块

(1).block中导入SPPF_LSKA
在这里插入图片描述
(2)__all__中添加 ‘SPPF_LSKA’
在这里插入图片描述

5、ultralytics/nn/tasks.py注册模块

(2)在from ultralytics.nn.modules import导入SPPF_LSKA
在这里插入图片描述
(2)tasks.py中的def parse_modelif m in 语句中添加SPPF_LSKA

在这里插入图片描述

6、导入yaml文件训练

在这里插入图片描述

成功!!!!!!!
参考文章
https://blog.csdn.net/2301_78698967/article/details/139765522
https://blog.csdn.net/pope888/article/details/135536385

相关文章:

  • vscode 配置debug的环境
  • 【简单的C++围棋游戏开发示例】
  • 构建AI私有化智能知识库的开源利器 AnythingLLM
  • HarmonyOS Next~应用开发入门:从架构认知到HelloWorld实战
  • 网安高级课第六次作业
  • AI Agent爆发的算力密码:需求、趋势与革新
  • JavaScript 图片 灰度算法 双线性插值
  • 【每日学点HarmonyOS Next知识】截图组件截取列表、Toggle组件、Web组件请求头、列表选择弹窗、游戏加速
  • 【橘子python】在vscode中配置py3
  • 关于2023新版PyCharm的使用
  • Python:函数的各类参数以及函数嵌套
  • Vue.js 监听属性
  • STM32F407IGT的USB功能
  • mysql下载与安装
  • 算法-回溯篇09-子集 II
  • 深度探索:美团开源DeepSeek R1 INT8量化技术的性能革命
  • 【每日论文】o3-mini vs DeepSeek-R1: Which One is Safer?
  • idea中的WebFacet到底是啥?
  • 【练习】【二叉树】力扣热题100 94. 二叉树的中序遍历
  • 前端基础之脚手架
  • 适合手机的网站/推广宣传
  • 企业网站建设价格/腾讯广告推广平台
  • 网站制作工作室/网站优化内容
  • 帝国cms网站迁移/营销型网站一般有哪些内容
  • 吴川市规划建设局网站/网上国网推广
  • 行业网站客服怎么做/淘词神器