当前位置: 首页 > news >正文

毕设做网站答辩一般问什么itmc平台seo优化关键词个数

毕设做网站答辩一般问什么,itmc平台seo优化关键词个数,直播app开发公司排名,网站访问过程作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.util…

作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
import os
import time
from torchvision import models# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 定义通道注意力
class ChannelAttention(nn.Module):def __init__(self, in_channels, ratio=16):super().__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)self.fc = nn.Sequential(nn.Linear(in_channels, in_channels // ratio, bias=False),nn.ReLU(),nn.Linear(in_channels // ratio, in_channels, bias=False))self.sigmoid = nn.Sigmoid()def forward(self, x):b, c, h, w = x.shapeavg_out = self.fc(self.avg_pool(x).view(b, c))max_out = self.fc(self.max_pool(x).view(b, c))attention = self.sigmoid(avg_out + max_out).view(b, c, 1, 1)return x * attention## 空间注意力模块
class SpatialAttention(nn.Module):def __init__(self, kernel_size=7):super().__init__()self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = torch.mean(x, dim=1, keepdim=True)max_out, _ = torch.max(x, dim=1, keepdim=True)pool_out = torch.cat([avg_out, max_out], dim=1)attention = self.conv(pool_out)return x * self.sigmoid(attention)## CBAM模块
class CBAM(nn.Module):def __init__(self, in_channels, ratio=16, kernel_size=7):super().__init__()self.channel_attn = ChannelAttention(in_channels, ratio)self.spatial_attn = SpatialAttention(kernel_size)def forward(self, x):x = self.channel_attn(x)x = self.spatial_attn(x)return x# 自定义ResNet18模型,插入CBAM模块
class ResNet18_CBAM(nn.Module):def __init__(self, num_classes=10, pretrained=True, cbam_ratio=16, cbam_kernel=7):super().__init__()# 加载预训练ResNet18self.backbone = models.resnet18(pretrained=pretrained) # 修改首层卷积以适应32x32输入self.backbone.conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)self.backbone.maxpool = nn.Identity()  # 移除原始MaxPool层# 在每个残差块组后添加CBAM模块self.cbam_layer1 = CBAM(in_channels=64, ratio=cbam_ratio, kernel_size=cbam_kernel)self.cbam_layer2 = CBAM(in_channels=128, ratio=cbam_ratio, kernel_size=cbam_kernel)self.cbam_layer3 = CBAM(in_channels=256, ratio=cbam_ratio, kernel_size=cbam_kernel)self.cbam_layer4 = CBAM(in_channels=512, ratio=cbam_ratio, kernel_size=cbam_kernel)# 修改分类头self.backbone.fc = nn.Linear(in_features=512, out_features=num_classes)def forward(self, x):x = self.backbone.conv1(x)x = self.backbone.bn1(x)x = self.backbone.relu(x)  # [B, 64, 32, 32]# 第一层残差块 + CBAMx = self.backbone.layer1(x)  # [B, 64, 32, 32]x = self.cbam_layer1(x)# 第二层残差块 + CBAMx = self.backbone.layer2(x)  # [B, 128, 16, 16]x = self.cbam_layer2(x)# 第三层残差块 + CBAMx = self.backbone.layer3(x)  # [B, 256, 8, 8]x = self.cbam_layer3(x)# 第四层残差块 + CBAMx = self.backbone.layer4(x)  # [B, 512, 4, 4]x = self.cbam_layer4(x)# 全局平均池化 + 分类x = self.backbone.avgpool(x)  # [B, 512, 1, 1]x = torch.flatten(x, 1)  # [B, 512]x = self.backbone.fc(x)  # [B, num_classes]return x# ==================== 数据加载修改部分 ====================
# 数据集路径
train_data_dir = 'archive/Train_Test_Valid/Train'
test_data_dir = 'archive/Train_Test_Valid/test'# 获取类别数量
num_classes = len(os.listdir(train_data_dir))
print(f"检测到 {num_classes} 个类别")# 数据预处理
train_transform = transforms.Compose([transforms.RandomResizedCrop(32),transforms.RandomHorizontalFlip(),transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),transforms.RandomRotation(15),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])test_transform = transforms.Compose([transforms.Resize(32),transforms.CenterCrop(32),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])# 加载数据集
train_dataset = datasets.ImageFolder(root=train_data_dir, transform=train_transform)
test_dataset = datasets.ImageFolder(root=test_data_dir, transform=test_transform)train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=4)print(f"训练集大小: {len(train_dataset)} 张图片")
print(f"测试集大小: {len(test_dataset)} 张图片")# ==================== 训练函数 ====================
def set_trainable_layers(model, trainable_parts):print(f"\n---> 解冻以下部分并设为可训练: {trainable_parts}")for name, param in model.named_parameters():param.requires_grad = Falsefor part in trainable_parts:if part in name:param.requires_grad = Truebreakdef train_staged_finetuning(model, criterion, train_loader, test_loader, device, epochs):optimizer = Noneall_iter_losses, iter_indices = [], []train_acc_history, test_acc_history = [], []train_loss_history, test_loss_history = [], []for epoch in range(1, epochs + 1):epoch_start_time = time.time()# 动态调整学习率和冻结层if epoch == 1:print("\n" + "="*50 + "\n🚀 **阶段 1:训练注意力模块和分类头**\n" + "="*50)set_trainable_layers(model, ["cbam", "backbone.fc"])optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-3)elif epoch == 6:print("\n" + "="*50 + "\n✈️ **阶段 2:解冻高层卷积层 (layer3, layer4)**\n" + "="*50)set_trainable_layers(model, ["cbam", "backbone.fc", "backbone.layer3", "backbone.layer4"])optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-4)elif epoch == 21:print("\n" + "="*50 + "\n🛰️ **阶段 3:解冻所有层,进行全局微调**\n" + "="*50)for param in model.parameters(): param.requires_grad = Trueoptimizer = optim.Adam(model.parameters(), lr=1e-5)# 训练循环model.train()running_loss, correct, total = 0.0, 0, 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append((epoch - 1) * len(train_loader) + batch_idx + 1)running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totaltrain_loss_history.append(epoch_train_loss)train_acc_history.append(epoch_train_acc)# 测试循环model.eval()test_loss, correct_test, total_test = 0, 0, 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testtest_loss_history.append(epoch_test_loss)test_acc_history.append(epoch_test_acc)print(f'Epoch {epoch}/{epochs} 完成 | 耗时: {time.time() - epoch_start_time:.2f}s | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘图函数def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 4))plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('训练和测试准确率')plt.legend(); plt.grid(True)plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('训练和测试损失')plt.legend(); plt.grid(True)plt.tight_layout()plt.show()print("\n训练完成! 开始绘制结果图表...")plot_iter_losses(all_iter_losses, iter_indices)plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc# ==================== 主程序 ====================
model = ResNet18_CBAM(num_classes=num_classes).to(device)
criterion = nn.CrossEntropyLoss()
epochs = 50print("开始使用带分阶段微调策略的ResNet18+CBAM模型进行训练...")
final_accuracy = train_staged_finetuning(model, criterion, train_loader, test_loader, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# 保存模型
torch.save(model.state_dict(), 'resnet18_cbam_custom.pth')
print("模型已保存为: resnet18_cbam_custom.pth")

使用设备: cpu
检测到 6 个类别
训练集大小: 900 张图片
测试集大小: 40 张图片
d:\anaconda\Lib\site-packages\torchvision\models\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.
  warnings.warn(
d:\anaconda\Lib\site-packages\torchvision\models\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=ResNet18_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet18_Weights.DEFAULT` to get the most up-to-date weights.
  warnings.warn(msg)
开始使用带分阶段微调策略的ResNet18+CBAM模型进行训练...

==================================================
🚀 **阶段 1:训练注意力模块和分类头**
==================================================

---> 解冻以下部分并设为可训练: ['cbam', 'backbone.fc']
Epoch 1/50 完成 | 耗时: 17.97s | 训练准确率: 19.89% | 测试准确率: 12.50%
Epoch 2/50 完成 | 耗时: 16.93s | 训练准确率: 31.22% | 测试准确率: 35.00%
Epoch 3/50 完成 | 耗时: 17.15s | 训练准确率: 35.56% | 测试准确率: 35.00%
Epoch 4/50 完成 | 耗时: 17.36s | 训练准确率: 37.11% | 测试准确率: 52.50%
Epoch 5/50 完成 | 耗时: 17.60s | 训练准确率: 37.56% | 测试准确率: 50.00%

==================================================
✈️ **阶段 2:解冻高层卷积层 (layer3, layer4)**
==================================================

---> 解冻以下部分并设为可训练: ['cbam', 'backbone.fc', 'backbone.layer3', 'backbone.layer4']
Epoch 6/50 完成 | 耗时: 19.17s | 训练准确率: 45.00% | 测试准确率: 60.00%
Epoch 7/50 完成 | 耗时: 19.26s | 训练准确率: 52.78% | 测试准确率: 67.50%
Epoch 8/50 完成 | 耗时: 19.21s | 训练准确率: 56.22% | 测试准确率: 62.50%
Epoch 9/50 完成 | 耗时: 19.33s | 训练准确率: 60.22% | 测试准确率: 72.50%
Epoch 10/50 完成 | 耗时: 19.32s | 训练准确率: 62.33% | 测试准确率: 72.50%
Epoch 11/50 完成 | 耗时: 19.34s | 训练准确率: 62.33% | 测试准确率: 70.00%
Epoch 12/50 完成 | 耗时: 29.18s | 训练准确率: 65.78% | 测试准确率: 72.50%
Epoch 13/50 完成 | 耗时: 37.93s | 训练准确率: 67.11% | 测试准确率: 72.50%
Epoch 14/50 完成 | 耗时: 36.39s | 训练准确率: 69.00% | 测试准确率: 75.00%
Epoch 15/50 完成 | 耗时: 37.31s | 训练准确率: 71.22% | 测试准确率: 72.50%
Epoch 16/50 完成 | 耗时: 36.51s | 训练准确率: 71.89% | 测试准确率: 72.50%
Epoch 17/50 完成 | 耗时: 24.59s | 训练准确率: 75.89% | 测试准确率: 67.50%
Epoch 18/50 完成 | 耗时: 36.65s | 训练准确率: 75.00% | 测试准确率: 70.00%
Epoch 19/50 完成 | 耗时: 20.12s | 训练准确率: 74.33% | 测试准确率: 67.50%
Epoch 20/50 完成 | 耗时: 19.23s | 训练准确率: 75.44% | 测试准确率: 70.00%

==================================================
🛰️ **阶段 3:解冻所有层,进行全局微调**
==================================================
Epoch 21/50 完成 | 耗时: 22.10s | 训练准确率: 76.78% | 测试准确率: 70.00%
Epoch 22/50 完成 | 耗时: 22.77s | 训练准确率: 78.33% | 测试准确率: 72.50%
Epoch 23/50 完成 | 耗时: 22.42s | 训练准确率: 78.67% | 测试准确率: 70.00%
Epoch 24/50 完成 | 耗时: 38.86s | 训练准确率: 77.33% | 测试准确率: 70.00%
Epoch 25/50 完成 | 耗时: 33.47s | 训练准确率: 80.11% | 测试准确率: 67.50%
Epoch 26/50 完成 | 耗时: 44.94s | 训练准确率: 78.11% | 测试准确率: 70.00%
Epoch 27/50 完成 | 耗时: 45.14s | 训练准确率: 78.56% | 测试准确率: 72.50%
Epoch 28/50 完成 | 耗时: 43.69s | 训练准确率: 79.22% | 测试准确率: 70.00%
Epoch 29/50 完成 | 耗时: 22.11s | 训练准确率: 78.67% | 测试准确率: 67.50%
Epoch 30/50 完成 | 耗时: 23.66s | 训练准确率: 81.11% | 测试准确率: 72.50%
Epoch 31/50 完成 | 耗时: 21.64s | 训练准确率: 77.22% | 测试准确率: 67.50%
Epoch 32/50 完成 | 耗时: 21.86s | 训练准确率: 79.33% | 测试准确率: 70.00%
Epoch 33/50 完成 | 耗时: 21.48s | 训练准确率: 83.89% | 测试准确率: 65.00%
Epoch 34/50 完成 | 耗时: 23.06s | 训练准确率: 81.44% | 测试准确率: 57.50%
Epoch 35/50 完成 | 耗时: 239.58s | 训练准确率: 79.89% | 测试准确率: 70.00%
Epoch 36/50 完成 | 耗时: 35.76s | 训练准确率: 79.11% | 测试准确率: 70.00%
Epoch 37/50 完成 | 耗时: 22.56s | 训练准确率: 83.00% | 测试准确率: 72.50%
Epoch 38/50 完成 | 耗时: 22.46s | 训练准确率: 82.00% | 测试准确率: 72.50%
Epoch 39/50 完成 | 耗时: 22.68s | 训练准确率: 81.78% | 测试准确率: 70.00%
Epoch 40/50 完成 | 耗时: 22.62s | 训练准确率: 84.44% | 测试准确率: 72.50%
Epoch 41/50 完成 | 耗时: 22.75s | 训练准确率: 80.22% | 测试准确率: 70.00%
Epoch 42/50 完成 | 耗时: 23.17s | 训练准确率: 82.56% | 测试准确率: 72.50%
Epoch 43/50 完成 | 耗时: 23.40s | 训练准确率: 81.78% | 测试准确率: 70.00%
Epoch 44/50 完成 | 耗时: 23.70s | 训练准确率: 81.44% | 测试准确率: 70.00%
Epoch 45/50 完成 | 耗时: 23.79s | 训练准确率: 81.11% | 测试准确率: 70.00%
Epoch 46/50 完成 | 耗时: 23.40s | 训练准确率: 81.56% | 测试准确率: 70.00%
Epoch 47/50 完成 | 耗时: 22.86s | 训练准确率: 83.22% | 测试准确率: 72.50%
Epoch 48/50 完成 | 耗时: 23.04s | 训练准确率: 81.89% | 测试准确率: 72.50%
Epoch 49/50 完成 | 耗时: 22.77s | 训练准确率: 84.11% | 测试准确率: 67.50%
Epoch 50/50 完成 | 耗时: 22.83s | 训练准确率: 83.00% | 测试准确率: 72.50%

训练完成! 开始绘制结果图表...

 @浙大疏锦行

http://www.dtcms.com/a/501668.html

相关文章:

  • 绍兴中交水利水电建设有限公司网站高端网站制作网站建设
  • 电商网站硬件配置厦门高端网站建设定制
  • 做微信商城网站哪家好wordpress数据备份插件
  • 品牌手表网站科研院所网站建设
  • 4k视频素材网站专业网站建设平台
  • php网站伪静态宝安品牌网站制作
  • kesioncms企业网站蓝色模板哈尔滨自助建站模板
  • 做地接的网站wordpress如何修改代码
  • 特色的南昌网站制作深州市住房保障和城乡建设局网站
  • 建设银行网站钓鱼11号在线 网站开发
  • 好看简单易做的网站新乡市工程建设信息网
  • 闵行区网站设计长春建设招标网
  • 抚松网站建设网页游戏排行榜开服表
  • ASP Session管理详解
  • 如何加强旅游电子商务网站的建设网站类型定位分析
  • 网站权重提升工具蓬莱做网站
  • 网站技术外包公司企业工商信息查询单在哪打印
  • 为什么访问外国网站速度慢网站建设 中小企业
  • 各大网站做推广广告如何做外卖网站app
  • 好看的旅游网站模版如何将自己做的网页做成网站
  • 单品网站怎么建设福田响应式网站建设服务
  • 网站转微信小程序四川招标投标网
  • 建网站开发费用网站等级保护测评必须做吗
  • 二分搜索树的特性
  • wordpress 网站小模块计算机应用技术移动互联网开发
  • 湖北微网站建设报价伪静态 多个网站
  • 网站空间数据企业名称登记管理规定
  • 建设安全备案登入那个网站syntax highlighter for wordpress
  • 网站建设 电话营销网站建设需求指引
  • 关键词搜索工具爱站网制冷设备东莞网站建设