当前位置: 首页 > news >正文

网站开发的团队有哪些深圳微交易网站开发

网站开发的团队有哪些,深圳微交易网站开发,如何建立一个大型的网站,百度爱采购服务商查询机器学习(Machine Learning) 简要声明 基于吴恩达教授(Andrew Ng)课程视频 BiliBili课程资源 文章目录 机器学习(Machine Learning)简要声明 二、决策边界决策边界的数学表达线性决策边界示例非线性决策边界非线性决策边界的示例…

机器学习(Machine Learning)

简要声明

基于吴恩达教授(Andrew Ng)课程视频
BiliBili课程资源


文章目录

  • 机器学习(Machine Learning)
    • 简要声明
  • 二、决策边界
    • 决策边界的数学表达
    • 线性决策边界示例
    • 非线性决策边界
    • 非线性决策边界的示例


一、逻辑回归的基本原理

二、决策边界

在逻辑回归中,决策边界是模型用于划分不同类别样本的边界。对于二分类任务,决策边界通常是一个阈值,例如 0.5。当模型输出大于等于 0.5 时,我们预测样本属于正类(1);当模型输出小于 0.5 时,我们预测样本属于负类(0)。

决策边界的选择对于模型的性能至关重要。在实际应用中,我们可能需要根据具体问题调整决策边界,以平衡精度和召回率。

决策边界的数学表达

决策边界的数学表达式为:

f w → , b ( x → ) ≥ 0.5 f_{\overrightarrow{w}, b}(\overrightarrow{x}) \geq 0.5 fw ,b(x )0.5

根据 Sigmoid 函数的性质,当且仅当线性组合 z = w → ⋅ x → + b ≥ 0 z = \overrightarrow{w} \cdot \overrightarrow{x} + b \geq 0 z=w x +b0 时, g ( z ) ≥ 0.5 g(z) \geq 0.5 g(z)0.5。因此,决策边界可以表示为:

w → ⋅ x → + b = 0 \overrightarrow{w} \cdot \overrightarrow{x} + b = 0 w x +b=0
在这里插入图片描述

线性决策边界示例

假设我们有一个二维特征空间,其中 x 1 x_1 x1 x 2 x_2 x2 是两个特征。决策边界可以表示为:

w 1 x 1 + w 2 x 2 + b = 0 w_1 x_1 + w_2 x_2 + b = 0 w1x1+w2x2+b=0

例如,假设 w 1 = 1 w_1 = 1 w1=1, w 2 = 1 w_2 = 1 w2=1, b = − 3 b = -3 b=3,则决策边界为:

x 1 + x 2 − 3 = 0 x_1 + x_2 - 3 = 0 x1+x23=0

即:

x 1 + x 2 = 3 x_1 + x_2 = 3 x1+x2=3

这个决策边界将特征空间划分为两个区域:当 x 1 + x 2 ≥ 3 x_1 + x_2 \geq 3 x1+x23 时,预测 y ^ = 1 \hat{y} = 1 y^=1;否则预测 y ^ = 0 \hat{y} = 0 y^=0
在这里插入图片描述

非线性决策边界

逻辑回归模型也可以处理非线性决策边界。通过引入多项式特征,我们可以构造更复杂的决策边界。例如:

z = w 1 x 1 2 + w 2 x 2 2 + b z = w_1 x_1^2 + w_2 x_2^2 + b z=w1x12+w2x22+b

决策边界为:

w 1 x 1 2 + w 2 x 2 2 + b = 0 w_1 x_1^2 + w_2 x_2^2 + b = 0 w1x12+w2x22+b=0

例如,假设 w 1 = 1 w_1 = 1 w1=1, w 2 = 1 w_2 = 1 w2=1, b = − 1 b = -1 b=1,则决策边界为:

x 1 2 + x 2 2 − 1 = 0 x_1^2 + x_2^2 - 1 = 0 x12+x221=0

即:

x 1 2 + x 2 2 = 1 x_1^2 + x_2^2 = 1 x12+x22=1

这个决策边界是一个半径为 1 的圆,将特征空间划分为内部和外部两个区域:当 x 1 2 + x 2 2 ≥ 1 x_1^2 + x_2^2 \geq 1 x12+x221 时,预测 y ^ = 1 \hat{y} = 1 y^=1;否则预测 y ^ = 0 \hat{y} = 0 y^=0

非线性决策边界的示例

考虑一个更复杂的非线性决策边界:

z = w 1 x 1 2 + w 2 x 2 2 + w 3 x 1 3 + w 4 x 1 x 2 + w 5 x 2 3 + b z = w_1 x_1^2 + w_2 x_2^2 + w_3 x_1^3 + w_4 x_1 x_2 + w_5 x_2^3 + b z=w1x12+w2x22+w3x13+w4x1x2+w5x23+b

决策边界为:

w 1 x 1 2 + w 2 x 2 2 + w 3 x 1 3 + w 4 x 1 x 2 + w 5 x 2 3 + b = 0 w_1 x_1^2 + w_2 x_2^2 + w_3 x_1^3 + w_4 x_1 x_2 + w_5 x_2^3 + b = 0 w1x12+w2x22+w3x13+w4x1x2+w5x23+b=0

这个决策边界可以是椭圆、圆形或其他复杂的形状,具体取决于参数的选择。

决策边界是逻辑回归模型用于划分不同类别样本的边界。对于线性可分的数据,决策边界是一个线性方程;对于非线性可分的数据,可以通过引入多项式特征来构造非线性决策边界。

在实际应用中,合理选择决策边界对于提高模型的分类性能至关重要。通过调整模型参数,我们可以使决策边界更好地适应数据的分布。


continue…

http://www.dtcms.com/a/493011.html

相关文章:

  • 用例图在线制作网站鄂尔多斯教育网站入口
  • 测试经理应如何管理测试进度
  • 撰写网站建设策划书范文房产发布网站建设
  • 站长之家权重查询广州做网站哪家好
  • 织梦dede做网站的优点绵阳的网站制作公司
  • 网站建设waocc用自己的电脑做网站服务器
  • 微博带动网站做排名seo网站建设接单
  • 聊城网站建设工作室开户推广竞价开户
  • 公司网站 seo专门做调查的网站
  • 网站服务器 英文wordpress 拖动
  • 十大免费数据网站网站用户体验解决方案
  • 找人搭建网站多少钱工具用具使用费是指企业施工生产
  • 云南做网站多少钱贵州省住房和城乡建设厅官网站
  • 诸暨公司网站建设天猫店
  • 网站策划工具如果做网站运营
  • 网站开发 建设叫什么怎么查自己名下有没有注册公司
  • 网站建设需要注意的关键细节东莞轻推网络公司
  • 网站建设方案如何写wordpress 消息队列
  • 网站架构搭建展示型网站案例
  • Linux操作系统学习之---进程信号的捕捉(version1)
  • wordpress文章中写代码怎么让客户做网站优化
  • 尚云网站建设如何建设一个国外网站
  • 挖矿网站怎么免费建设福州搜索排名提升
  • 百度站长网站验证一站式网站建设顾问
  • 网站建设管理费一能多少钱购物网站的设计思路
  • 云主机放多个网站百度提问登陆入口
  • C++ 用哈希表封装unordered_set/map
  • 生物科技公司网站模板如何做攻击类型网站
  • 注册一个免费的网站办公室装修费用
  • 免费网站推广方式asp做网站步骤