当前位置: 首页 > news >正文

DAY 34 GPU训练及类的call方法-

知识点回顾:

CPU性能的查看:看架构代际、核心数、线程数
GPU性能的查看:看显存、看级别、看架构代际
GPU训练的方法:数据和模型移动到GPU device上
类的call方法:为什么定义前向传播时可以直接写作self.fc1(x)
ps:在训练过程中可以在命令行输入nvida-smi查看显存占用情况

import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as np# 仍然用4特征,3分类的鸢尾花数据集作为我们今天的数据集
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 标签数据
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# # 打印下尺寸
# print(X_train.shape)
# print(y_train.shape)
# print(X_test.shape)
# print(y_test.shape)# 归一化数据,神经网络对于输入数据的尺寸敏感,归一化是最常见的处理方式
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test) #确保训练集和测试集是相同的缩放# 将数据转换为 PyTorch 张量,因为 PyTorch 使用张量进行训练
# y_train和y_test是整数,所以需要转化为long类型,如果是float32,会输出1.0 0.0
X_train = torch.FloatTensor(X_train)
y_train = torch.LongTensor(y_train)
X_test = torch.FloatTensor(X_test)
y_test = torch.LongTensor(y_test)class MLP(nn.Module): # 定义一个多层感知机(MLP)模型,继承父类nn.Moduledef __init__(self): # 初始化函数super(MLP, self).__init__() # 调用父类的初始化函数# 前三行是八股文,后面的是自定义的self.fc1 = nn.Linear(4, 10)  # 输入层到隐藏层self.relu = nn.ReLU()self.fc2 = nn.Linear(10, 3)  # 隐藏层到输出层
# 输出层不需要激活函数,因为后面会用到交叉熵函数cross_entropy,交叉熵函数内部有softmax函数,会把输出转化为概率def forward(self, x):out = self.fc1(x)out = self.relu(out)out = self.fc2(out)return out# 实例化模型
model = MLP()# 分类问题使用交叉熵损失函数
criterion = nn.CrossEntropyLoss()# 使用随机梯度下降优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)# # 使用自适应学习率的化器
# optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练模型
num_epochs = 20000 # 训练的轮数# 用于存储每个 epoch 的损失值
losses = []import time
start_time = time.time() # 记录开始时间for epoch in range(num_epochs): # range是从0开始,所以epoch是从0开始# 前向传播outputs = model.forward(X_train)   # 显式调用forward函数# outputs = model(X_train)  # 常见写法隐式调用forward函数,其实是用了model类的__call__方法loss = criterion(outputs, y_train) # output是模型预测值,y_train是真实标签# 反向传播和优化optimizer.zero_grad() #梯度清零,因为PyTorch会累积梯度,所以每次迭代需要清零,梯度累计是那种小的bitchsize模拟大的bitchsizeloss.backward() # 反向传播计算梯度optimizer.step() # 更新参数# 记录损失值losses.append(loss.item())# 打印训练信息if (epoch + 1) % 100 == 0: # range是从0开始,所以epoch+1是从当前epoch开始,每100个epoch打印一次print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')time_all = time.time() - start_time # 计算训练时间
print(f'Training time: {time_all:.2f} seconds')
import matplotlib.pyplot as plt
# 可视化损失曲线
plt.plot(range(num_epochs), losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.show()

import wmic = wmi.WMI()
processors = c.Win32_Processor()for processor in processors:print(f"CPU 型号: {processor.Name}")print(f"核心数: {processor.NumberOfCores}")print(f"线程数: {processor.NumberOfLogicalProcessors}")
# 不带参数的call方法
class Counter:def __init__(self):self.count = 0def __call__(self):self.count += 1return self.count# 使用示例
counter = Counter()
print(counter())  # 输出: 1
print(counter())  # 输出: 2
print(counter())
print(counter.count)  # 输出: 2

http://www.dtcms.com/a/470713.html

相关文章:

  • 建设高端网站公司安徽省工程造价信息网
  • 狮岭做网站网站建设与运营
  • TDengine 数学函数 ATAN() 用户手册
  • 网站页面设计欣赏如何实现一个响应式网页
  • C# 中的回调函数
  • 海南网站公司苏州吴中区住房和城乡建设局网站
  • SwiftUI 的状态管理包装器(Property Wrapper)
  • MATLAB基于WOA(鲸鱼优化算法)优化LSTM神经网络的分类模型实现。主要功能是通过智能算法自动寻找LSTM的最佳超参数,构建分类模型并对数据进行分类预测
  • Ethernet II 帧头部
  • 【完整源码+数据集+部署教程】 植物组织分割系统源码&数据集分享 [yolov8-seg-LSKNet等50+全套改进创新点发刊_一键训练教程_Web前端展示
  • 网站链接怎么做二维码诸暨网站制作有哪些公司
  • 大连网站制作网页asp网站经常 响应
  • 引航科技提供网站建设建设网站的分析
  • 【笔记】poll,实现I/O多路复用的一种机制,是 select 的改进版
  • 智能风控-银行卡实名认证接口-银行卡实名API助力企业高效合规管理
  • Java基础面试题
  • 网站建站建设费用新任上海市领导调整公示
  • 泰安市网站建设公司合肥制作网站企业
  • chrome插件开发_chrome扩展程序开发
  • GraphQL 初学者指南
  • 天津网站建设推荐安徽秒搜科技深圳高端人力资源公司
  • 图片生成网站大连工业大学继续教育学院
  • 国外时尚设计网站展台展览
  • 用 Python 打造一个 Telegram 二手交易商城机器人
  • 广胜达建设集团网站百度上首页
  • 网站显示域名武进网站建设哪家好
  • 建立一个网站wordpress 网站备案
  • 怎么做网站图标做一个flash网站多少钱
  • MobaXterm部署项目到云服务器
  • CTF攻防世界WEB精选基础入门:command_execution