当前位置: 首页 > news >正文

网站开发师是属于IT主体职业网站美工如何做

网站开发师是属于IT主体职业,网站美工如何做,网站后台多附件上传,用虚拟主机好还是阿里云wordpress1. pytorch手写数字预测 1.背景2.准备数据集2.定义模型3.dataloader和训练4.训练模型5.测试模型6.保存模型 1.背景 因为自身的研究方向是多模态目标跟踪,突然对其他的视觉方向产生了兴趣,所以心血来潮的回到最经典的视觉任务手写数字预测上来&#xff0…

1. pytorch手写数字预测

  • 1.背景
  • 2.准备数据集
  • 2.定义模型
  • 3.dataloader和训练
  • 4.训练模型
  • 5.测试模型
  • 6.保存模型

1.背景

因为自身的研究方向是多模态目标跟踪,突然对其他的视觉方向产生了兴趣,所以心血来潮的回到最经典的视觉任务手写数字预测上来,所以这份教程并不是一份非常详尽的教程,是在一部分pytorch,深度学习基础上的教程,如果需要的是非常保姆级的教程建议看别的文章

2.准备数据集

这里我才用了直接导torchvision中的dataset包来下载Mnist数据集,也算是一个非常经典的数据集了

# 导入数据集
from torchvision.datasets import MNIST
import torch# 设置随机种子
torch.manual_seed(3306)# 数据预处理
from torchvision import transforms
# 定义数据转换
transform = transforms.Compose([transforms.ToTensor(),  # 转换为 Tensortransforms.Normalize((0.1307,), (0.3081,))  # 标准化
])# 下载 MNIST 数据集
mnist_train = MNIST(root='./dataset_file/mnist_raw', train=True, download=True,transform=transform)
mnist_test = MNIST(root='./dataset_file/mnist_raw', train=False, download=True,transform=transform)
# 查看数据集大小
print(f"MNIST train dataset size: {len(mnist_train)}")
print(f"MNIST test dataset size: {len(mnist_test)}")

其中,MNIST()中的root代表的是数据集存放的位置,download代表是如果当前位置没有数据集是否需要下载。
transformer则是对数据的处理方式,我这里采用了简单地转成tensor和简单地标准化。

不过这样子下载下来的数据集是二进制格式的,无法直接查看图片,当然,如果你需要查看图片,也有办法。

# 查看图片
import matplotlib.pyplot as pltdef show_image(id):img, label = mnist_train[id]img = img.squeeze().numpy()  # 去掉通道维度print(img.shape)# print(img)plt.imshow(img, cmap='gray')plt.title(f"Label: {label}")plt.axis('off')plt.show()show_image(1)

效果
在这里插入图片描述

又或者你想要下载的数据集是图片格式,我这里也准备了代码

代码是在别人的基础上改的,其中数据集存放路径是dataset_dir,如果需要修改自行打印然后修改位置就好了。

#!/usr/bin/env python3
# -*- encoding utf-8 -*-'''
@File: save_mnist_to_jpg.py
@Date: 2024-08-23
@Author: KRISNAT
@Version: 0.0.0
@Email: ****
@Copyright: (C)Copyright 2024, KRISNAT
@Desc:1. 通过 torchvision.datasets.MNIST 下载、解压和读取 MNIST 数据集;2. 使用 PIL.Image.save 将 MNIST 数据集中的灰度图片以 JPEG 格式保存。
'''import sys, os
sys.path.insert(0, os.getcwd())from torchvision.datasets import MNIST
import PIL
from tqdm import tqdmif __name__ == "__main__":home_dir = os.path.abspath('.')root = os.path.abspath(os.path.join(home_dir, '../dataset_file'))print(root)# exit(0)# 图片保存路径dataset_dir = os.path.join(root, 'mnist_jpg')if not os.path.exists(dataset_dir):os.makedirs(dataset_dir)# 从网络上下载或从本地加载MNIST数据集# 训练集60K、测试集10K# torchvision.datasets.MNIST接口下载的数据一组元组# 每个元组的结构是: (PIL.Image.Image image model=L size=28x28, 标签数字 int)training_dataset = MNIST(root='mnist',train=True,download=True,)test_dataset = MNIST(root='mnist',train=False,download=True,)# 保存训练集图片with tqdm(total=len(training_dataset), ncols=150) as pro_bar:for idx, (X, y) in enumerate(training_dataset):f = dataset_dir + "/" + "training_" + str(idx) + \"_" + str(training_dataset[idx][1] ) + ".jpg"  # 文件路径training_dataset[idx][0].save(f)pro_bar.update(n=1)# 保存测试集图片with tqdm(total=len(test_dataset), ncols=150) as pro_bar:for idx, (X, y) in enumerate(test_dataset):f = dataset_dir + "/" + "test_" + str(idx) + \"_" + str(test_dataset[idx][1] ) + ".jpg"  # 文件路径test_dataset[idx][0].save(f)pro_bar.update(n=1)

2.定义模型

这里我准备了两个模型,一个MLP模型和一个简单地CNN模型,其中MLP模型参数量1M,CNN模型参数量大概8M,当然这俩模型也没有很仔细的规划

import torch
import torch.nn as nnclass DigitLinear(nn.Module):def __init__(self):super(DigitLinear, self).__init__()self.fc1 = nn.Linear(28 * 28, 1000)self.fc2 = nn.Linear(1000, 500)self.dropout = nn.Dropout(0.3)self.fc3 = nn.Linear(500, 10)def forward(self, x):x = x.view(-1, 28 * 28)x = self.fc1(x)x = torch.relu(x)x = self.dropout(x)x = self.fc2(x)x = torch.relu(x)x = self.fc3(x)return xclass DigitCNN(nn.Module):def __init__(self):super(DigitCNN,self).__init__()self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)self.fc1 = nn.Linear(64*28*28, 128)self.dropout = nn.Dropout(0.1)self.fc2 = nn.Linear(128, 10)def forward(self, x):# print("x.shape:", x.shape)B,N,H,W = x.shapex = self.conv1(x)x = torch.relu(x)x = self.conv2(x)x = torch.relu(x)x = x.view(B, -1)  # 展平x = self.fc1(x)x = torch.relu(x)x = self.dropout(x)x = self.fc2(x)return x

3.dataloader和训练

这里的代码就很简单了,就是一些参数的选择,例如epoch,batchsize。其中的训练函数我写的买有很全面,只是勉强满足了训练功能,还有好多可以优化的点,比如打印fps,断点续训练啥的,不过这个任务提不起劲去干这事,大家可以自行优化。

# 数据加载器
from torch.utils.data import DataLoader
from lib.model.DigitModel import DigitLinear,DigitCNN
# 定义数据加载器
batch_size = 256
train_loader = DataLoader(mnist_train, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(mnist_test, batch_size=batch_size, shuffle=False)epoch = 50
# 训练模型
net = DigitLinear() # 参数量1M 97.50%
# net = DigitCNN() # 参数量8M 98.81%
net.cuda()# 定义损失函数和优化器
import torch.optim as optim
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练函数def train_model(model, train_loader, criterion, optimizer, num_epochs=10):model.train()  # 设置模型为训练模式for epoch in range(num_epochs):running_loss = 0.0correct = 0total = 0for i, (inputs, labels) in enumerate(train_loader):inputs= inputs.cuda()y = torch.tensor(torch.zeros((inputs.shape[0],10), dtype=torch.float)).cuda()y[torch.arange(inputs.shape[0]), labels] = 1optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, y)loss.backward()optimizer.step()running_loss += loss.item()_, predicted = outputs.max(1)total += labels.size(0)correct += predicted.eq(labels.cuda()).sum().item()epoch_loss = running_loss / len(train_loader)epoch_acc = 100. * correct / totalprint(f'Epoch [{epoch+1}/{num_epochs}], Loss: {epoch_loss:.4f}, Accuracy: {epoch_acc:.2f}%')# 训练模型
train_model(net, train_loader, criterion, optimizer, num_epochs=epoch)

4.训练模型

有了上面的代码就可以开始训练了,我这里训练的截图是我的MLP模型,效果不是很好,CNN的效果稍微好一点,比MLP高1%,但是图忘记截了。反正够用了,因为本身MNIST的数据就不是很完美,有很多类似于噪声的数据例如:
在这里插入图片描述
这些数字我人眼都分不出是什么玩意。

训练效果如下
在这里插入图片描述

5.测试模型

训练完当然是测试了
最后我的MLP模型跑了97.50%的准确率

代码如下

# 测试模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net.eval()
correct = 0
total = 0
with torch.no_grad():for inputs, labels in test_loader:inputs, labels = inputs.to(device).float(), labels.to(device).float()outputs = net(inputs)_, predicted = outputs.max(1)total += labels.size(0)correct += predicted.eq(labels.cuda()).sum().item()# print(f"Predicted: {predicted}, Ground Truth: {targets}")print(f"Accuracy: {correct / total * 100:.4f} %")

在这里插入图片描述

6.保存模型

保存模型代码就更简单了

# 保存模型
torch.save(net.state_dict(), './digit_model.pth')
http://www.dtcms.com/a/467820.html

相关文章:

  • 网站后台上传软件免费的微网站哪个好
  • 网站建设的网站定位上海设计公司官网
  • 专业网站建设流程网站建设赛车
  • 网站域名域名wordpress兼容php版本
  • 婚纱摄影网站开题报告一起做网站女装夏季
  • 建设银行内部网站6攀枝花建设银行网站
  • 个人网站 域名选择浙江微信网站建设
  • 网站头部修改东莞人才市场招聘官网
  • 中国建设银行网站登陆做空运货代常用网站
  • 手机适配网站深圳市在建项目查询
  • 做同城特价的网站在线制图生成器
  • 农村网站建设补助织梦和wordpress能共存
  • 接收新网站如何做诊断太原做网站软件
  • 住建培训网站wordpress主题文件夹在哪
  • 网站上线准备汉中建设工程招投标信息网
  • 网站优化模板怎么写软文推广
  • 佛山购物网站建设上海 网站设计 排名
  • 海北公司网站建设做网站的工具怎么使用
  • 仿漫画网站建设定制小说网站系统源码建设四川铁科建设监理有限公司官方网站
  • 字体版权登记网站湛江模板建站哪家好
  • 怎么建设个网站网站合肥网站建设专业设计
  • 哪里有零基础网站建设教学服务网络维护工作内容是什么
  • 门户网站需要多少费用备案中的网站名称
  • 外贸网站的域名网站流量排行
  • python做笔记的网站数商云工作怎么样
  • 济南房产信息网站官网做汽配外贸是在哪个网站做
  • AT指令解析:TencentOS Tiny AT指令解析源码分析1-简介
  • 建设摩托车125价格东莞网站seo优化
  • wordpress企业站主题下载建设网站需要什么人员
  • 建网站的步骤及方法可以做公众号的网站吗