Spark on k8s部署
一、环境准备
1.安装Jdk1.8
(1)Jdk1.8下载地址:https://www.oracle.com/java/technologies/downloads/archive/
将压缩包解压到/opt/目录
tar zxf jdk-8u212-linux-x64.tar.gz -C /opt/
(2)配置环境变量
编辑配置文件,vi /etc/profile
,添加以下内容
#jdk1.8.0_121
export JAVA_HOME=/opt/jdk1.8.0_212
export CLASSPATH=.:$JAVA_HOME/jre/lib/rt.jar:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
export PATH=$PATH:$JAVA_HOME/bin
使环境变量生效
source /etc/profile
(3)添加jdk安全认证
引入如下三个包
并在java.security文件中添加配置 security.provider.10=org.bouncycastle.jce.provider.BouncyCastleProvider
2、获取Spark安装包文件
(1)使用wget命令下载Spark v3.2.3安装包文件。
wget https://archive.apache.org/dist/spark/spark-3.2.3/spark-3.2.3-bin-hadoop3.2.tgz
(2)解压并重命名
tar -zxvf spark-3.2.3-bin-hadoop3.2.tgz -C /opt/module
mv spark-3.2.3-bin-hadoop3.2 spark-3.2.3
3、初始化K8s环境
(1)创建metaSphere Namespace
编写metaSphere-namespace.yaml
vi metaSphere-namespace.yaml
apiVersion: v1
kind: Namespace
metadata:name: metaspherelabels:app.kubernetes.io/name: metasphereapp.kubernetes.io/instance: metasphere
提交yaml创建namespace
kubectl apply -f metaSphere-namespace.yaml
查看namespace
kubectl get ns
(2)创建ServiceAccount
编写spark-service-account.yaml
vi spark-service-account.yaml
apiVersion: v1
kind: ServiceAccount
metadata:namespace: metaspherename: spark-service-accountlabels:app.kubernetes.io/name: metasphereapp.kubernetes.io/instance: metasphereapp.kubernetes.io/version: v3.2.3
提交yaml创建ServiceAccount
kubectl apply -f spark-service-account.yaml
查看ServiceAccount
kubectl get sa -n metasphere
(3)创建Role和RoleBinding
编写spark-role.yaml
vi spark-role.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:labels:app.kubernetes.io/name: metasphereapp.kubernetes.io/instance: metasphereapp.kubernetes.io/version: v3.2.3namespace: metaspherename: spark-role
rules:- apiGroups: [""]resources: ["pods"]verbs: ["get", "watch", "list", "create", "delete"]- apiGroups: ["extensions", "apps"]resources: ["deployments"]verbs: ["get", "watch", "list", "create", "delete"]- apiGroups: [""]resources: ["configmaps"]verbs: ["get", "create", "update", "delete"]- apiGroups: [""]resources: ["secrets"]verbs: ["get"]- apiGroups: [""]resources: ["services"]verbs: ["get", "list", "create", "delete"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:labels:app.kubernetes.io/name: metasphereapp.kubernetes.io/instance: metasphereapp.kubernetes.io/version: v3.2.3name: spark-role-bindingnamespace: metasphere
roleRef:apiGroup: rbac.authorization.k8s.iokind: Rolename: spark-role
subjects:- kind: ServiceAccountname: spark-service-accountnamespace: metasphere
提交yaml创建Role和RoleBinding
kubectl apply -f spark-role.yaml
查看Role和RoleBinding
kubectl get role -n metasphere
kubectl get rolebinding -n metasphere
(4)创建ClusterRole和ClusterRoleBinding
编写cluster-role.yaml
vi cluster-role.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:labels:app.kubernetes.io/name: metasphereapp.kubernetes.io/instance: metasphereapp.kubernetes.io/version: v3.2.3name: apache-spark-clusterrole
rules:- apiGroups:- ''resources:- configmaps- endpoints- nodes- pods- secrets- namespacesverbs:- list- watch- get- apiGroups:- ''resources:- servicesverbs:- get- list- watch- apiGroups:- ''resources:- eventsverbs:- create- patch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:labels:app.kubernetes.io/name: metasphereapp.kubernetes.io/instance: metasphereapp.kubernetes.io/version: v3.2.3name: apache-spark-clusterrole-binding
roleRef:apiGroup: rbac.authorization.k8s.iokind: ClusterRolename: apache-spark-clusterrole
subjects:- kind: ServiceAccountname: spark-service-accountnamespace: metasphere
提交yaml创建ClusterRole和ClusterRoleBinding
kubectl apply -f cluster-role.yaml
查看ClusterRole和ClusterRoleBinding
kubectl get ClusterRole | grep sparkkubectl get ClusterRoleBinding | grep spark
二、Spark On K8s基本测试
1、拉取apache spark镜像
到Docker Hub查找apache spark的镜像,并拉取到本地
docker pull apache/spark:v3.2.3
如果因为网络原因无法下载镜像,则使用以下镜像
docker pull registry.cn-hangzhou.aliyuncs.com/cm_ns01/apache-spark:v3.2.3
2、查看k8s master的url
获取Kubernetes control plane URL
kubectl cluster-info
3、提交Spark程序到K8s上运行
/opt/module/spark-3.2.3/bin/spark-submit \--name SparkPi \--verbose \--master k8s://https://localhost:6443 \--deploy-mode cluster \--conf spark.network.timeout=300 \--conf spark.executor.instances=3 \--conf spark.driver.cores=1 \--conf spark.executor.cores=1 \--conf spark.driver.memory=1024m \--conf spark.executor.memory=1024m \--conf spark.kubernetes.namespace=metasphere \--conf spark.kubernetes.container.image.pullPolicy=IfNotPresent \--conf spark.kubernetes.container.image=registry.cn-hangzhou.aliyuncs.com/cm_ns01/apache-spark:v3.2.3 \--conf spark.kubernetes.authenticate.driver.serviceAccountName=spark-service-account \--conf spark.kubernetes.authenticate.executor.serviceAccountName=spark-service-account \--conf spark.driver.extraJavaOptions="-Dio.netty.tryReflectionSetAccessible=true" \--conf spark.executor.extraJavaOptions="-Dio.netty.tryReflectionSetAccessible=true" \--class org.apache.spark.examples.SparkPi \local:///opt/spark/examples/jars/spark-examples_2.12-3.2.3.jar \3000
参数说明:
–master为Kubernetes control plane URL
–deploy-mode为cluster,则driver和executor都运行在K8s里
–conf spark.kubernetes.namespace为前面创建的命名空间metasphere
–conf spark.kubernetes.container.image为Spark的镜像地址
–conf spark.kubernetes.authenticate.executor.serviceAccountName为前面创建的spark-service-account
–class为Spark程序的启动类
local:///opt/spark/examples/jars/spark-examples_2.12-3.2.3.jar为Spark程序所在的Jar文件,spark-examples_2.12-3.2.3.jar是Spark镜像自带的,所以使用local schema
3000是传入Spark程序的启动类的参数
4、观察driver pod和executor pod
watch -n 1 kubectl get all -owide -n metasphere
5、查看日志输出
kubectl logs sparkpi-b9de1a887b1163f1-driver -n metasphere
6、清理Driver Pod
kubectl delete pod sparkpi-b9de1a887b1163f1-driver -n metasphere