当前位置: 首页 > news >正文

做电子请柬的网站郑州百度推广公司电话

做电子请柬的网站,郑州百度推广公司电话,上海买二手车注册公司,怎样拥有自己的网站本文是《A-VAX: Applying Quality by Design to Vaccines》第七个研究的R语言解决方案。 使用带两个中心点的二水平析因设计。运行10次实验。结果是分辨度为III的设计。 A <- c(25,25,15,15,15,25,25,20,15,20) B <- c(12,8,8,12,8,12,8,10,12,10) C <- c(35,15,15…

本文是《A-VAX: Applying Quality by Design to Vaccines》第七个研究的R语言解决方案。

使用带两个中心点的二水平析因设计。运行10次实验。结果是分辨度为III的设计。

A <- c(25,25,15,15,15,25,25,20,15,20)

B <- c(12,8,8,12,8,12,8,10,12,10)

C <- c(35,15,15,15,35,15,35,25,35,25)

D <- c(250,250,250,150,150,150,150,200,250,200)

E <- c(20,20,10,20,20,10,10,15,10,15)

F <- c(24,12,24,12,24,24,12,18,12,18)

A <- c(1,1,-1,-1,-1,1,1,0,-1,0)

B <- c(1,-1,-1,1,-1,1,-1,0,1,0)

C <- c(1,-1,-1,-1,1,-1,1,0,1,0)

D <- c(1,1,1,-1,-1,-1,-1,0,1,0)

E <- c(1,1,-1,1,1,-1,-1,0,-1,0)

F <- c(1,-1,1,-1,1,1,-1,0,-1,0)

y1<-c(11.58,12.78,7.58,7.13,8.31,10.19,13.33,9.4,7.35,11.24)

y2<-c(0.59,0.49,0.24,0.28,0.26,0.25,0.58,0.49,0.22,0.40)

y3<-c(54.36,31.31,27.57,48.32,26.85,59.2,32.84,41.21,46.24,37.73)

y4<-c(53,45,44,35,57,35,53,47,58,56)

study6<- data.frame (A=A,B=B,C=C,D=D,E=E,F=F)

#aliases( lm( y1~ (.)^4, data = study6))

mod1 <- lm( y1 ~ (.), data = study6)

summary(mod1)

> summary(mod1)

Call:

lm.default(formula = y1 ~ (.), data = study6)

Residuals:

      1       2       3       4       5       6       7       8       9      10

 0.0160 -0.2315  0.0160  0.0160 -0.2315 -0.2315  0.0160 -0.4890 -0.2315  1.3510

Coefficients:

            Estimate Std. Error t value Pr(>|t|)   

(Intercept)  9.88900    0.27566  35.873 4.76e-05 ***

A            2.18875    0.30820   7.102  0.00574 **

B           -0.71875    0.30820  -2.332  0.10195   

C            0.36125    0.30820   1.172  0.32576   

D            0.04125    0.30820   0.134  0.90200   

E            0.16875    0.30820   0.548  0.62212   

F           -0.36625    0.30820  -1.188  0.32020   

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8717 on 3 degrees of freedom

Multiple R-squared:  0.9516,    Adjusted R-squared:  0.8548

F-statistic: 9.829 on 6 and 3 DF,  p-value: 0.04393

mod2 <- lm( y2 ~ (.), data = study6)

summary(mod2)

> summary(mod2)

Call:

lm.default(formula = y2 ~ (.), data = study6)

Residuals:

      1       2       3       4       5       6       7       8       9      10

 0.0425 -0.0750  0.0425  0.0425 -0.0750 -0.0750  0.0425  0.1100 -0.0750  0.0200

Coefficients:

            Estimate Std. Error t value Pr(>|t|)  

(Intercept)  0.38000    0.03752  10.129  0.00205 **

A            0.11375    0.04194   2.712  0.07305 .

B           -0.02875    0.04194  -0.685  0.54229  

C            0.04875    0.04194   1.162  0.32920  

D            0.02125    0.04194   0.507  0.64731  

E            0.04125    0.04194   0.983  0.39791  

F           -0.02875    0.04194  -0.685  0.54229  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1186 on 3 degrees of freedom

Multiple R-squared:  0.7837,    Adjusted R-squared:  0.3511

F-statistic: 1.811 on 6 and 3 DF,  p-value: 0.3347

mod3 <- lm( y3 ~ (.), data = study6)

summary(mod3)

> summary(mod3)

Call:

lm.default(formula = y3 ~ (.), data = study6)

Residuals:

      1       2       3       4       5       6       7       8       9      10

 0.2095  0.3370  0.2095  0.2095  0.3370  0.3370  0.2095  0.6470  0.3370 -2.8330

Coefficients:

            Estimate Std. Error t value Pr(>|t|)   

(Intercept)  40.5630     0.5500  73.754 5.49e-06 ***

A             3.5913     0.6149   5.840 0.010002 * 

B            11.1938     0.6149  18.204 0.000362 ***

C            -0.7637     0.6149  -1.242 0.302458   

D            -0.9662     0.6149  -1.571 0.214127   

E            -0.6262     0.6149  -1.018 0.383437   

F             1.1588     0.6149   1.884 0.156005   

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.739 on 3 degrees of freedom

Multiple R-squared:  0.992,     Adjusted R-squared:  0.9761

F-statistic: 62.35 on 6 and 3 DF,  p-value: 0.003075

mod4 <- lm( y4 ~ (.), data = study6)

summary(mod4)

> summary(mod4)

Call:

lm.default(formula = y4 ~ (.), data = study6)

Residuals:

    1     2     3     4     5     6     7     8     9    10

-2.05  0.45 -2.05 -2.05  0.45  0.45 -2.05 -1.30  0.45  7.70

Coefficients:

              Estimate Std. Error t value Pr(>|t|)   

(Intercept)  4.830e+01  1.619e+00  29.840 8.27e-05 ***

A           -1.000e+00  1.810e+00  -0.553   0.6191   

B           -2.250e+00  1.810e+00  -1.243   0.3021   

C            7.750e+00  1.810e+00   4.282   0.0234 * 

D            2.500e+00  1.810e+00   1.381   0.2610   

E            2.728e-15  1.810e+00   0.000   1.0000   

F           -2.500e-01  1.810e+00  -0.138   0.8989   

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.119 on 3 degrees of freedom

Multiple R-squared:  0.8806,    Adjusted R-squared:  0.6417

  1. statistic: 3.686 on 6 and 3 DF,  p-value: 0.1558

http://www.dtcms.com/a/444121.html

相关文章:

  • 建设电子网站试卷a国内网站开发公司
  • 苏州惊天网站制作网网站301跳转
  • 男女做羞羞事漫画网站免费网页自我介绍制作模板
  • 自学网站建设好学吗品牌建设部门的搭建
  • 有哪些做分析图用的地图网站咸阳网站建设有哪些
  • 红酒网站模板达州+网站建设
  • 网站建设市场调研报告品质最好的购物平台
  • 网站有很多304状态码怎么搭建一个小程序
  • 顾客评价网站免费建个人手机网站
  • 计算机网站建设是什么意思免费行情的软件入口下载
  • 网站 wap 插件成都seo服务
  • wordpress查看需要密码廊坊视频优化效果
  • 网站进行诊断wordpress 浮窗音乐
  • 道滘镇做网站网站开发app定制
  • 网站海外推广公司wordpress django
  • 黄页 网站模板wordpress添加打赏功能
  • 企业网站建设存在的不足与困难南通有哪些网站
  • 【嵌入式】【科普】数学算法软件开发思维导图
  • ConcurrentHashMap put/get/扩容操作
  • 知名自助建站平台微商城开发公司
  • 国内高端网站危机舆情公关公司
  • 网站设计说明书主要有什么大型网站制作教程
  • 龙华区住房和建设局网站官网镇江网站建设方式优化
  • 高新网站设计找哪家学网站建设 去哪里
  • 自学网站建设和seo会员管理网站建设
  • 观澜网站建设公司h5网页
  • 网站建设 通知申请号的网站
  • 流程设计网站江苏住房和城乡建设部网站
  • 网站服务器建立上海闵行刚刚发生的
  • 手机怎么制作网站教程视频教程网站识别手机电脑自动跳转