day85——区域和的检索(LeetCode-303)
题目描述
给定一个整数数组 nums
,处理以下类型的多个查询:
- 计算索引
left
和right
(包含left
和right
)之间的nums
元素的 和 ,其中left <= right
实现 NumArray
类:
NumArray(int[] nums)
使用数组nums
初始化对象int sumRange(int i, int j)
返回数组nums
中索引left
和right
之间的元素的 总和 ,包含left
和right
两点(也就是nums[left] + nums[left + 1] + ... + nums[right]
)
示例 1:
输入: ["NumArray", "sumRange", "sumRange", "sumRange"] [[[-2, 0, 3, -5, 2, -1]], [0, 2], [2, 5], [0, 5]] 输出: [null, 1, -1, -3]解释: NumArray numArray = new NumArray([-2, 0, 3, -5, 2, -1]); numArray.sumRange(0, 2); // return 1 ((-2) + 0 + 3) numArray.sumRange(2, 5); // return -1 (3 + (-5) + 2 + (-1)) numArray.sumRange(0, 5); // return -3 ((-2) + 0 + 3 + (-5) + 2 + (-1))
提示:
1 <= nums.length <= 104
-105 <= nums[i] <= 105
0 <= i <= j < nums.length
- 最多调用
104
次sumRange
方法
解决方案:
1、利用状态方程求前缀和,一次遍历即可:sums[i + 1] = sums[i] + nums[i];
2、C++库函数:partial_sum(nums.begin(),nums.end(),sums.begin()+1);
函数源码:
方案一:
class NumArray { public:vector<int> sums;NumArray(vector<int>& nums) {int n = nums.size();sums.resize(n + 1);for (int i = 0; i < n; i++) {sums[i + 1] = sums[i] + nums[i];}}int sumRange(int i, int j) {return sums[j + 1] - sums[i];} };
方案二:
class NumArray {vector<int>sums; public:NumArray(vector<int>& nums) : sums(nums.size()+1,0){ partial_sum(nums.begin(),nums.end(),sums.begin()+1);}int sumRange(int left, int right) {return sums[right+1]-sums[left];} };/*** Your NumArray object will be instantiated and called as such:* NumArray* obj = new NumArray(nums);* int param_1 = obj->sumRange(left,right);*/