数据治理8-数据治理成熟度与管理
如何验证或者界定你的数据治理的成果?
一、数据治理成熟度与考核标准
DCMM(Data Management Capability Maturity Assessment Model,数据管理能力成熟度评估模型)是由全国信标委大数据标准工作组(国家工信部信软司主导,多家企业和研究机构共同组成)研发,并于2018年3月15日正式发布,是我国数据管理领域最佳实践的总结和提升。
DCMM模型是一个整合了标准规范、管理方法论、评估模型等多方面内容的综合框架,他将组织内部数据能力划分为八个重要组成部分,描述了每个组成部分的定义、功能、目标和标准。该标准适用于组织在进行数据管理时候的规划,设计和评估,也可以作为针对信息系统建设状况的指导、监督和检查的依据。
1.1 DCMM结构组成
DCMM模型,按照组织、制度、流程、技术对数据管理能力进行了分析、总结,提炼出组织数据管理的八大过程域,即:数据战略、数据治理、数据架构、数据应用、数据安全、数据质量管理、数据标准、数据生命周期。这八个过程域共包含28个过程项,441项评价指标。
1.2 关键领域定义
组织数据能力被综合定义为八大一级过程域,其中每个一级过程域又有若干二级过程域来组成, DCMM中通过对每个二级过程域的概念、目标以及功能的定义来标准化组织数据管理的过程。在进行数据 能力评估的过程中,每个一级过程域相互独立,可以独立开展评估,但是,在实际的管理过程中,每个 一级过程域又相互支撑,需要统一全面开展才能完善数据管理体系。
-
数据战略:数据战略规划、数据战略实施、数据战略评估
-
数据治理:数据治理组织、数据制度建设、数据治理沟通
-
数据架构:数据模型、数据分布、数据集成与共享、元数据管理
-
数据应用:数据分析、数据开放共享、数据服务
-
数据安全:数据安全策略、数据安全管理、数据安全审计
-
数据质量:数据质量需求、数据质量检查、数据质量分析、数据质量提升
-
数据标准:业务数据、参考数据和主数据、数据元、指标数据
-
数据生存周期:数据需求、数据设计和开放、数据运维、数据退役
1.2.1 数据战略
数据战略是组织中数据工作开展的目标指引,定义组织数据工作的方向、愿景和原则。数据战略包括数据战略规划、数据战略实施、数据战略评估等三个二级域,从组织数据战略的规划、实施和评价等方面对数据战略进行描述。
1.2.2 数据治理
数据治理是数据管理框架的核心职能,是对数据资产管理行使权利和控制的活动集合,数据治理涉及到数据管理的组织,标准规范,流程,架构等多个方面,和数据管理的其他关键过程域都有交互,数 据治理是在高层次上制定、执行数据管理的制度。
1.2.3 数据架构
数据架构是用于定义数据需求、指导对数据资产的整合和控制、使数据投资与业务战略相匹配的一 套整体构件规范。数据架构包括数据模型、数据分布、数据集成与共享和元数据管理四个二级职能域, 数据模型职能域定义与规范业务经营、管理和决策活动需要的组织数据需求,数据分布职能域确定各类 数据资产在组织内部的合理部署,数据集成与共享职能域实现组织的各类数据资产在组织内整合在一 起,元数据管理是关于元数据的创建、存储、整合与控制等一整套流程集合。
1.2.4 数据应用
数据应用是指通过对组织数据进行统一的管理、加工和应用,对内支持业务运营、流程优化、营销 推广、风险管理、渠道整合等活动,对外支持数据开放共享、数据服务等活动,从而提升数据在组织运 营管理过程中的支撑辅助作用,同时实现数据价值的变现。
1.2.5 数据安全
数据安全是指组织中的数据受到保护,没有受到破坏、更改、泄露和非法的访问。数据安全主要包 括数据安全策略、数据安全管理和数据安全审计等三个过程域,从制度、管理和审计三个方面来提升组 织数据的安全性。
1.2.6 数据质量
数据质量是指数据的适用性(fitness for use),描述数据对业务和管理的满足度。数据质量主要 是指数据的准确性、及时性,完整性,唯一性,一致性,有效性等六个方面。数据质量管理是通过对数 据的分析,监控,评估和改进的过程。
1.2.7 数据标准
数据标准是组织数据中的基准数据,为组织各个信息系统中的数据提供规范化、标准化的依据,是 组织数据集成、共享的基础,是组织数据的重要组成部分。依据数据特性的不同,可以把数据标准具体 划分为四大类:业务术语标准、参考数据和主数据标准、数据项标准、指标数据标准。
1.2.8 数据生命周期
数据生命周期是指数据从设计、开发、创建、迁移、应用、存档、回收的周期、再次激活以及退出 的整个过程,对数据进行贯穿其整个生命的管理需要相应的策略和技术实现手段。数据生命周期管理的 目的在于帮助组织在数据生命周期的各个阶段以最低的成本获得最大的价值。
1.3 DCMM的能力等级划分
与CMMI类似,DCMM模型将组织的数据能力成熟度划分为初始级、受管理级、稳健级、量化管理级和优化级共5个发展等级,帮助组织进行数据管理能力成熟度的评价。
二、建立数据治理的长效运营机制
从实践中总结制定一系列的管理办法、流程和规范,并及时演进迭代
固定的专业组织、充分赋权,负责数据治理实施的整体推进。
制规范,定目标,促落地,保健康
首先它包含了业务侧的治理工作组,科技侧的治理工作组。这是两个虚拟组织,各由其业务领域的业务专家,各科技研发中心的技术专家组成。同样它包含 3 个实体组织:业务数据 Owner、业务科技 Owner、平台方。业务数据 Owner 参考了我们的 GPO(流程 Owner)的概念,业务部门的核心领导就是业务数据 Owner,业务数据 Owner 来承载业务数据的定义、分类、保护、使用及授权。业务科技 Owner 是业务数据 Owner 对应的科技研发中心。比如供应商数据的业务数据 Owner 是集团采购供应链中心,业务科技 Owner 是采购与综合解决方案研发中心。平台方由大数据平台研发中心的专职人员组成,主要是负责协助业务数据 Owner,业务科技 Owner 来做数据治理体系的整体的建设。