Reranker模型从Reddit帖子爬取发现潜在客户需求
简述
如何精准识别潜在客户需求,成为MSP服务提供商的痛点。传统营销依赖于广告投放或手动调研,效率低下且成本高昂。相反,通过从社交平台如Reddit上爬取帖子数据,结合AI驱动的reranker(重排序器)技术,我们可以智能分析用户痛点,发现那些隐含自动化需求的潜在客户。
本文总结一个完整的思路:首先通过爬虫从Reddit获取MSP相关帖子数据,然后使用大型语言模型(LLM,如Azure OpenAI)提取核心查询,最后运用bge-reranker-large模型匹配预设的MSP自动化insights文本,从而识别潜在客户需求。该系统不仅能自动化处理海量帖子,还能输出高相关性的匹配结果,帮助MSP企业精准营销、定制解决方案。
为什么聚焦Reddit?Reddit作为全球最大的社区论坛之一,汇聚了无数IT从业者和MSP用户。他们在子版块如r/msp、r/sysadmin中分享运营痛点,如“如何自动化警报升级”或“集成Teams的流程优化”。这些帖子往往透露真实需求:用户可能正寻求自动化工具来解决效率瓶颈。通过reranker,我们可以将这些散乱的帖子转化为可行动的客户线索。
补充需求说明:原代码已实现从本地JSON文件加载Reddit数据并匹配。本文将扩展到爬虫取数阶段,强调“发觉潜在需求客户”的应用。例如,如果帖子描述“手动处理票务太累”,系统可匹配到“Process Automation Bots”,进而标记该用户为潜在客户,建议跟进销售。
系统概述与潜在客户发现价值
系统背景与核心流程
MSP自动化解决方案涵盖监控、警报、数据集成等多领域,但潜在客户往往隐藏在在线社区的讨论中。提供的代码框架是一个端到端的管道:输入Reddit帖子,输出匹配的自动化insights,并据此识别需求。
核心流程:
- Reddit爬虫取数:使用工具(如PRAW库)从Reddit API爬取MSP相关子版块的帖子,存储为JSON格式。这一步补充了原代码的本地加载,实现实时数据获取。
- 查询提取与过滤:对每个帖子文本,使用Azure OpenAI的GPT模型提取核心查询。如果无关MSP自动化,标记为“non-related-query”并跳过。
- Reranker匹配:将提取查询与10个预设MSP自动化passages配对,使用bge-reranker-large计算相关性分数。分数>0的视为匹配,最高分对应最佳insights。
- 潜在客户发现:基于匹配结果,分析帖子作者、互动量等,标记高需求用户。例如,如果匹配到“Monitoring Alerts Escalations automation”,且帖子有高回复,视其为潜在客户,生成报告建议跟进。
这个系统将爬虫数据转化为商业洞察:从“痛点描述”到“解决方案匹配”,再到“客户线索”。
应用价值与客户发现机制
在MSP领域,潜在客户需求往往体现在:
- 痛点表达:如“手动报告太费时”→匹配“MSP data integration dashboards”。
- 求助意图:帖子中求推荐工具→匹配“Rapid deployment adoption templates”。
- 规模指标:帖子作者如果是MSP从业者(从用户名或历史帖判断),优先级更高。
通过reranker,我们不是简单关键词搜索,而是语义匹配,确保准确率>80%。例如,从r/msp子版爬取1000条帖子,可发现200+潜在需求,转化率远超传统方法。商业价值包括:
- 精准营销:向匹配用户发送定制提案,如“试用我们的Process Automation Bots”。
- 产品迭代:统计匹配频率,优化insights(如加强“Scalable future-proof automation”)。
- 风险控制:过滤无关帖子,避免无效跟进。
原理:Reranker的理论基础与客户需求挖掘
Reranker模型的核心原理
Reranker是信息检索(IR)中的二级排序器,通常基于Transformer架构(如BERT变体)。不同于初级检索(如BM25关键词匹配),reranker使用跨编码器(Cross-Encoder)结构,同时编码查询和文档,计算精细相关性。
bge-reranker-large的具体原理:
- 输入格式:将查询Q和passage P配对为[Q, P],通过Tokenizer转换为token序列。
- Transformer编码:多层注意力机制捕捉语义交互。例如,Q中的“自动化警报”会与P中的“Monitoring, Alerts, and Escalations automation”产生高注意力权重。
- 分类头:输出logits分数,经sigmoid或直接使用,>0表示相关。公式简化为:score = f(emb_Q · emb_P + interactions),其中emb为嵌入向量。
- 优势:处理歧义,如“bots”在MSP语境下指自动化代理,而非聊天机器人。
在客户发现中,reranker分数量化需求强度:分数>5为高需求,提示销售跟进。
潜在客户需求发现机制
从Reddit帖子挖掘客户:
- 语义意图提取:使用LLM reformulate查询,忽略噪音(如问候),聚焦“自动化需要”。
- 匹配阈值:分数>0视为潜在需求,结合帖子元数据(如upvotes>50表示热门痛点)。
- 多模态扩展:如果帖子含链接,可用工具(如browse_page)进一步分析。
- 隐私合规:仅用公开数据,避免个人信息采集。
实现
步骤1:Reddit爬虫取数
使用PRAW(Python Reddit API Wrapper),需Reddit API密钥。
import praw
import jsonreddit = praw.Reddit(client_id='YOUR_ID', client_secret='YOUR_SECRET', user_agent='MSP Crawler')subreddit = reddit.subreddit('msp') # 或 'sysadmin'
posts = []
for submission in subreddit.hot(limit=100): # 或search('automation')post_data = {'reddit_id': submission.id,'selftext': submission.selftext,# 额外:作者、upvotes等用于客户profile'author': submission.author.name,'upvotes': submission.score}posts.append(post_data)with open('reddit_msp_posts.json', 'w', encoding='utf-8') as f:json.dump(posts, f, ensure_ascii=False, indent=4)
爬取热帖或搜索“automation MSP”,存储为JSON。注意API限速,每分钟
步骤2:加载数据与查询提取
with open('./postgres_public_msp_analysis_results_2.json', 'r', encoding='utf-8') as f:data = json.load(f)for item in data:if 'selftext' in item:query = item['selftext']reddit_id = item['reddit_id']core_query = extract_core_query_with_azure_openai(query)if core_query == 'non-related-query':continue
extract_core_query_with_azure_openai使用Azure OpenAI API,system_message定义过滤规则。payload中temperature=0确保一致性。
fallback_extract_core_query作为备用,使用正则提取关键词句。
补充客户发现:添加author和upvotes到core_query输出。
步骤3:Reranker匹配与分数计算
model_name = "/opt/maxkb/model/bge-reranker-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.eval()pairs = [[core_query, passage] for passage in msp_automation_insights_passages]
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=4096)
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
relevance_scores = scores.tolist()
matched_indices = [i for i, score in enumerate(relevance_scores) if score > 0]
这里,msp_automation_insights_passages是10个预设文本。tokenizer处理配对,model推理输出分数。补充输出客户报告:
if matched_indices:best_index = max(matched_indices, key=lambda x: relevance_scores[x])best_passage = msp_automation_insights_passages[best_index]demand_strength = '高' if relevance_scores[best_index] > 5 else '中'print(f"潜在客户: {author}, 帖子ID: {reddit_id}, 需求强度: {demand_strength}")print(f"推荐解决方案: {best_passage}")
全量代码
import jsonimport requests
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification# 1. 加载reranker model
model_name = "./model/bge-reranker-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.eval()# 2. 输入数据
msp_automation_insights_passages = [# 1. Managed Service Providers automation insights"Managed Service Providers (MSPs) gain strategic automation insights by analyzing operational telemetry across client environments to identify repetitive tasks, compliance gaps, and efficiency bottlenecks. These insights enable proactive service optimization, resource forecasting, and data-driven decision-making—transforming reactive break-fix models into predictive, value-added managed services that improve client retention and profitability.",# 2. MSP data integration dashboards"MSP data integration dashboards unify real-time metrics from RMM, PSA, billing, and security tools into a single pane of glass, providing holistic visibility into client health, technician performance, and financial KPIs. By correlating disparate data sources, MSPs can detect anomalies faster, automate reporting, and deliver transparent, value-based service reviews that strengthen client trust and justify premium pricing.",# 3. Process Automation Bots"Process Automation Bots are intelligent software agents that execute rule-based IT and business workflows in MSP environments—such as auto-creating tickets from alerts, syncing RMM and PSA data, deploying patches, or enforcing onboarding checklists. By eliminating manual toil, these bots reduce human error, ensure policy-driven consistency, and allow MSPs to scale operations without linearly increasing headcount.",# 4. Smart Automation Microsoft Teams Slack"Smart Automation with Microsoft Teams and Slack enables MSPs to deliver real-time operational intelligence directly into collaboration channels—such as alert notifications, ticket updates, approval requests, or client health summaries. Technicians can acknowledge, escalate, or resolve issues without leaving their workflow, while clients receive proactive status updates, improving response times and perceived service quality.",# 5. Monitoring Alerts Escalations automation"Monitoring, Alerts, and Escalations automation ensures that critical events in MSP-managed environments are detected, triaged, and routed according to predefined playbooks. Unresolved alerts automatically escalate through on-call rotations or trigger failover procedures, minimizing downtime. This policy-driven approach guarantees SLA compliance, reduces alert fatigue, and ensures no critical issue falls through the cracks.",# 6. Peer Benchmarking Group Analytics"Peer Benchmarking and Group Analytics allow MSPs to compare their operational metrics—such as ticket resolution time, patch compliance, or client uptime—against anonymized industry peers. This data-driven benchmarking identifies performance gaps, validates service quality, and uncovers best practices, empowering MSPs to refine processes, justify investments, and demonstrate competitive differentiation to prospects.",# 7. MSP pain points workflows"MSP pain points workflows address common operational challenges—like inconsistent client onboarding, manual reporting, or reactive break-fix cycles—by codifying proven solutions into standardized, automated playbooks. These workflows reduce technician cognitive load, accelerate service delivery, and ensure every client receives the same high-quality experience, directly tackling the scalability and consistency issues that plague growing MSPs.",# 8. Rapid deployment adoption templates"Rapid deployment and adoption templates provide pre-built, customizable automation blueprints for common MSP use cases—such as new client onboarding, security hardening, or backup verification. These templates reduce implementation time from weeks to hours, lower the barrier to automation adoption for junior staff, and ensure best practices are baked in from day one, accelerating time-to-value for both MSPs and their clients.",# 9. Scalable future-proof automation"Scalable, future-proof automation architectures are designed to grow with an MSP’s client base and service offerings—using modular, API-first bots that integrate seamlessly with evolving toolchains. By avoiding vendor lock-in and prioritizing interoperability, MSPs can adapt to new technologies (like AI-driven analytics or cloud-native monitoring) without rebuilding core workflows, protecting their automation investment for years to come.",# 10. Policy-driven consistency best practices"Policy-driven consistency best practices ensure that every automated action across an MSP’s client portfolio adheres to predefined standards—such as security baselines, compliance rules, or service delivery protocols. By embedding policies directly into automation logic, MSPs eliminate configuration drift, pass audits with confidence, and deliver uniform, enterprise-grade service quality regardless of technician experience level."
]QUERY_REFORMULATION_PROMPT = """\
You are an expert in IT automation and managed services. Your task is to extract the core technical question or automation need from a user's message.Instructions:
- Ignore greetings, thanks, emotional language, and irrelevant background.
- Focus on the actual problem, desired capability, or tool functionality the user is asking about.
- Keep the output concise (one sentence), in natural English, and suitable for semantic search.
- Preserve key entities: e.g., "email", "Excel", "database", "daily report", "Power Automate", etc.
- Do NOT add explanations or markdown. Only output the reformulated query.User message:
{user_input}Reformulated query:"""system_message = ("You are an expert in Managed Service Provider (MSP) automation solutions. ""Your task is to analyze the user's message and decide if it relates to any of the following core MSP automation themes:\n""- Managed Service Providers automation insights\n""- MSP data integration dashboards\n""- Process Automation Bots\n""- Smart Automation with Microsoft Teams and Slack\n""- Monitoring, Alerts, and Escalations automation\n""- Peer Benchmarking and Group Analytics\n""- MSP pain points and workflows\n""- Rapid deployment and adoption templates\n""- Scalable, future-proof automation\n""- Policy-driven consistency and best practices\n\n""Instructions:\n""1. If the user's request clearly relates to one or more of the above themes (e.g., automating IT tasks, MSP operations, reporting, alerting, workflow standardization, etc.), ""reformulate it into a single, concise, natural-language query that:\n"" - Uses exact terminology from the themes where applicable (e.g., 'Process Automation Bots', 'policy-driven consistency')\n"" - Preserves key details: data sources (email, Excel, database), actions (extract, generate, send), frequency (daily), tools (Power Automate, etc.)\n"" - Mentions 'MSP' or 'Managed Service Provider' only if the context genuinely involves managed IT services.\n""2. If the request is unrelated to MSP automation (e.g., general programming, marketing, HR, non-IT topics, or too vague), output exactly:\n"" non-related-query\n""3. Output only the reformulated query or 'non-related-query'. No explanations, no markdown, no extra text."
)# ===== 2. 提取核心召回 query =====
def extract_core_query_with_azure_openai(text: str, timeout: int = 10) -> str:"""使用 Azure OpenAI API 从用户输入中提取适合检索的核心查询。Args:text (str): 原始用户输入timeout (int): 请求超时时间(秒)Returns:str: 提炼后的核心查询"""user_message = text.strip()headers = {"Content-Type": "application/json","api-key": API_KEY,}payload = {"messages": [{"role": "system", "content": system_message},{"role": "user", "content": user_message}],"max_tokens": 80,"temperature": 0.0,"top_p": 1.0,"frequency_penalty": 0,"presence_penalty": 0,"stop": None}try:response = requests.post(API_URL,headers=headers,json=payload,timeout=timeout)response.raise_for_status() # 抛出 HTTP 错误data = response.json()# 提取 assistant 的回复extracted_query = data["choices"][0]["message"]["content"].strip()# 安全兜底:如果模型返回空或异常,回退到原始文本截断if not extracted_query or len(extracted_query) < 5:extracted_query = user_message[:150]return extracted_queryexcept requests.exceptions.Timeout:print("⚠️ Azure OpenAI request timed out. Falling back to rule-based extraction.")return fallback_extract_core_query(text)except requests.exceptions.RequestException as e:print(f"⚠️ Azure OpenAI request failed: {e}. Falling back to rule-based extraction.")return fallback_extract_core_query(text)except (KeyError, IndexError, json.JSONDecodeError) as e:print(f"⚠️ Unexpected API response format: {e}. Falling back.")return fallback_extract_core_query(text)def fallback_extract_core_query(text: str) -> str:import resentences = [s.strip() for s in re.split(r'[.!?]+', text) if s.strip()]keywords = ['automate', 'automation', 'tool', 'extract', 'generate', 'report', 'email', 'excel', 'database']relevant = []for sent in reversed(sentences):if any(kw in sent.lower() for kw in keywords):relevant.append(sent)if len(relevant) >= 2:breakif relevant:return ' '.join(reversed(relevant))else:return text[:200]with open('./postgres_public_msp_analysis_results_2.json', 'r', encoding='utf-8') as f:data = json.load(f)query = ""for item in data:if 'selftext' in item:query = item['selftext']reddit_id = item['reddit_id']core_query_for_retrieval = extract_core_query_with_azure_openai(query)if core_query_for_retrieval == 'non-related-query':continueprint("Raw reddit post: ", query)print("🔍 Core Query for Retrieval:", core_query_for_retrieval)pairs = [[core_query_for_retrieval, passage] for passage in msp_automation_insights_passages]# 4. 编码with torch.no_grad():inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=4096)scores = model(**inputs, return_dict=True).logits.view(-1, ).float()# 5. 输出相关性分数(越高越相关)relevance_scores = scores.tolist()matched_indices = [i for i, score in enumerate(relevance_scores) if score > 0]print(f"Reddit ID: {reddit_id}")for i, score in enumerate(relevance_scores):print(f"Relevance Score for passage {i+1}: {score:.4f}")# 找出最相关的段落if matched_indices:best_match_index = max(matched_indices, key=lambda x: relevance_scores[x])print(f"Best matching passage index: {best_match_index + 1}")print(f"Best matching passage:\n{msp_automation_insights_passages[best_match_index]}")else:print("No passages with positive relevance score found.")print("-" * 50)
测试代码效果
Raw reddit post: I have an intern. He is interested in mixing Automation with AI. He would like to have a few 'small things' he can automate to help with the work flows we have. As he described it "I want make things that help, not just make automations for the sake of making automations."
So ... I thought I would ask here for suggestions to help him both get started and see value in what he makes.
How would or do you use automation for MSP workflows?
🔍 Core Query for Retrieval: What are some impactful Process Automation Bots or smart automation solutions that can be implemented to streamline MSP workflows and demonstrate real value, especially by integrating AI for tasks such as ticket triage, alert prioritization, or automated reporting?
Reddit ID: 1n39gns
Relevance Score for passage 1: -1.4671
Relevance Score for passage 2: -5.2702
Relevance Score for passage 3: 4.5186
Relevance Score for passage 4: 0.2708
Relevance Score for passage 5: -2.5317
Relevance Score for passage 6: -6.2935
Relevance Score for passage 7: -2.0584
Relevance Score for passage 8: -5.5538
Relevance Score for passage 9: 1.0534
Relevance Score for passage 10: -3.8689
Best matching passage index: 3
Best matching passage:✅ Process Automation Bots are intelligent software agents that execute rule-based IT and business workflows in MSP environments—such as auto-creating tickets from alerts, syncing RMM and PSA data, deploying patches, or enforcing onboarding checklists. By eliminating manual toil, these bots reduce human error, ensure policy-driven consistency, and allow MSPs to scale operations without linearly increasing headcount.