spark pipeline 转换n个字段,如何对某个字段反向转换
eg:
f1做onehot f2做labelEncoder f3做归一化. 输入模型推理结果仅仅是f2. 如何对f2做反向转换获取到原始数据.
代码
from pyspark.sql import SparkSession
from pyspark.sql import functions as F
from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, StringIndexerModel, VectorAssembler, MinMaxScaler, IndexToString
from pyspark.ml.functions import vector_to_arraydef main():# 1) 启动 Spark(本地示例)spark = (SparkSession.builder.appName("pyspark_pipeline_example").master("local[*]").getOrCreate())spark.sparkContext.setLogLevel("ERROR")# 2) 构造示例数据:# - category: 需要做 LabelEncoder(StringIndexer)# - value: 需要做数值归一化(MinMaxScaler)data = [("A", 1.0),("B", 2.0),("A", 3.0),("C", 5.0),(None, 10.0), # 含空值,演示 handleInvalid="keep"]df = spark.createDataFrame(data, ["category", "value"])print('原始数据:')df.show(truncate=False)# 3) 定义 Pipeline 各阶段# StringIndexer 做“标签编码”,将字符串类目映射到数值索引indexer = StringIndexer(inputCol="category",outputCol="category_idx",handleInvalid="keep", # 未见/空值统一映射到一个索引)# 数值特征先装配为向量,再做 Min-Max 归一化到 [0,1]assembler = VectorAssembler(inputCols=["value"], outputCol="value_vec")scaler = MinMaxScaler(inputCol="value_vec", outputCol="value_scaled_vec")pipeline = Pipeline(stages=[indexer, assembler, scaler])# 4) 拟合并转换model = pipeline.fit(df)out = model.transform(df)# 将 1 维向量转回标量便于查看out = out.withColumn("value_scaled", vector_to_array(F.col("value_scaled_vec"))[0])print("编码/归一化后的结果:")out.select("category", "category_idx", "value", "value_scaled").show(truncate=False)# 5) 仅对一列做“反向转换”(把 category_idx -> 原始字符串)# 不依赖 stages 的下标,优先从列的 metadata 读取 labels;若缺失再根据输出列名定位对应的 StringIndexerModel。def resolve_labels_from_metadata(dataframe, indexed_col: str):md = dataframe.schema[indexed_col].metadata# StringIndexer 会在输出列写入 ml_attr.valsif isinstance(md, dict):ml_attr = md.get("ml_attr") or {}vals = ml_attr.get("vals")if vals:return list(vals)# 某些 Spark 版本 metadata 不是纯 dict,也尝试通用访问try:ml_attr = md["ml_attr"]vals = ml_attr["vals"]if vals:return list(vals)except Exception:passreturn Nonelabels = resolve_labels_from_metadata(out, "category_idx")if labels is None:# 退化方案:在 pipeline 内按类型与输出列名查找对应的 StringIndexerModelfor st in model.stages:if isinstance(st, StringIndexerModel) and st.getOutputCol() == "category_idx":labels = list(st.labels)breakif labels is None:raise RuntimeError("无法解析 category_idx 的 labels(既无 metadata,也未在 pipeline 中找到对应的 StringIndexerModel)")idx_to_str = IndexToString(inputCol="category_idx", outputCol="category_inv", labels=labels)reversed_df = idx_to_str.transform(out)print("仅对 category_idx 做反向转换(一列):")reversed_df.select("category_idx", "category_inv").show(truncate=False)# spark.stop()if __name__ == "__main__":main()
结果
原始数据: +--------+-----+ |category|value| +--------+-----+ |A |1.0 | |B |2.0 | |A |3.0 | |C |5.0 | |NULL |10.0 | +--------+-----+编码/归一化后的结果: +--------+------------+-----+------------------+ |category|category_idx|value|value_scaled | +--------+------------+-----+------------------+ |A |0.0 |1.0 |0.0 | |B |1.0 |2.0 |0.1111111111111111| |A |0.0 |3.0 |0.2222222222222222| |C |2.0 |5.0 |0.4444444444444444| |NULL |3.0 |10.0 |1.0 | +--------+------------+-----+------------------+仅对 category_idx 做反向转换(一列): +------------+------------+ |category_idx|category_inv| +------------+------------+ |0.0 |A | |1.0 |B | |0.0 |A | |2.0 |C | |3.0 |__unknown | +------------+------------+