RV1126 RKNN环境搭建记录
RV1126 RKNN环境搭建记录
下载资源
https://github.com/rockchip-linux/rknn-toolkit
https://github.com/airockchip/rknn_model_zoo/tree/main/examples/yolov5
通过github下载 rknn-toolkit-v1.7.5-packages.tar.gz 搭建py环境
windows 环境
使用conda创建python3.6 需要cpu版本
tensorflow==1.14.0
torch==1.10.0+cpu
torchvision==0.11.0+cpu
mxnet==1.5.0
opencv的安装
pip install opencv-python==4.5.4.60
安装 rknn_toolkit-1.7.5-cp36-cp36m-win_amd64.whl
其中onnx相关的库onnxoptimizer需要cmake环境来重新编译,vs2022 c++也需要存在
windows USB OTG
需要adb与NTB, 安装rknn中的 zadig-2.4.exe 可能需要重启系统.
查询设备列表
from rknn.api import RKNNif __name__ == '__main__':rknn = RKNN()devices = rknn.list_devices()print(devices)rknn.release()
会显示出:
*************************
all device(s) with ntb mode:
e97ee02154b70c05
*************************
Yolov5模型转换
参考 https://github.com/airockchip/rknn_model_zoo 中的yolov5转rknn脚本 convert.py
pt模型转onnx
yolov5(6.0) 这是单独的python环境,与上面不一样
python export.py --weights %file% --img 640 --device cpu --include onnx --batch-size 1 --train --opset 12
我转换出的模型是3输出
转换
python convert.py yolov5.onnx rv1126 fp
其模型信息是FP16的输入输出,推理一张图片太慢了6秒多
==input=================
index=0, name=images_208, n_dims=4, n_elems=1228800, size=2457600, fmt=NCHW(0), type=FP16(1), qnt_type=NONE(0), zp=112863, scale=0.000000
640,640,3,1,==output 0=================
index=0, name=Transpose_Transpose_217/out0_0, n_dims=5, n_elems=1632000, size=3264000, fmt=NCHW(0), type=FP16(1), qnt_type=NONE(0), zp=112863, scale=0.000000
85,80,80,3,1,
==output 1=================
index=1, name=Transpose_Transpose_231/out0_1, n_dims=5, n_elems=408000, size=816000, fmt=NCHW(0), type=FP16(1), qnt_type=NONE(0), zp=112863, scale=0.000000
85,40,40,3,1,
==output 2=================
index=2, name=Transpose_Transpose_245/out0_2, n_dims=5, n_elems=102000, size=204000, fmt=NCHW(0), type=FP16(1), qnt_type=NONE(0), zp=112863, scale=0.000000
85,20,20,3,1,
如何量化与预编译
python convert.py yolov5.onnx ==input=================
index=0, name=images_208, n_dims=4, n_elems=1228800, size=1228800, fmt=NCHW(0), type=UINT8(3), qnt_type=AFFINE(2), zp=0, scale=0.003922
640,640,3,1==output 0=================
index=0, name=Transpose_Transpose_217/out0_0, n_dims=5, n_elems=1632000, size=1632000, fmt=NCHW(0), type=UINT8(3), qnt_type=AFFINE(2), zp=184, scale=0.098818
85,80,80,3,1
==output 1=================
index=1, name=Transpose_Transpose_231/out0_1, n_dims=5, n_elems=408000, size=408000, fmt=NCHW(0), type=UINT8(3), qnt_type=AFFINE(2), zp=167, scale=0.081664
85,40,40,3,1
==output 2=================
index=2, name=Transpose_Transpose_245/out0_2, n_dims=5, n_elems=102000, size=102000, fmt=NCHW(0), type=UINT8(3), qnt_type=AFFINE(2), zp=163, scale=0.078188
85,20,20,3,1
==output process u8=========
大约299毫秒
如何验证推理结果..