当前位置: 首页 > news >正文

Gli appunti di scienza dei dati[5]

文章目录

  • probability
  • references

probability

  1. there are suppositions that AAA is random exercise, GGG is sample space of AAA,every event EEE of AAA corresponds with a real number which can be called as probability of EEE,that is P(E)P(E)P(E).
    the P is regard as a function to tranform an event to the real number belonged to the event. P(E)P(E)P(E) is ever greater than or equals zero for each event E; P(E′)=1P(E')=1P(E)=1 when the E′E'E event necessarily happen; let E1,E2,....E_1,E_2,....E1,E2,.... are events which only one presents at the same time,that is to say, Ei∩Ej=∅E_i \cap E_j=\emptyEiEj=.
    P(E1∪E2∪..)=P(E1)+P(E2)+...P(E_1 \cup E_2 \cup ..)=P(E_1)+P(E_2)+...P(E1E2..)=P(E1)+P(E2)+...
    by the way,the following things are characteristics of probability.
  • P(∅)=0P(\empty)=0P()=0.
  • P(E1∪E2∪..∪En)=P(E1)+P(E2)+...+P(En)P(E_1 \cup E_2 \cup ..\cup E_n)=P(E_1)+P(E_2)+...+P(E_n)P(E1E2..En)=P(E1)+P(E2)+...+P(En),that is to say it is finite additivity.
  • P(E2−E1)=P(E2)−P(E1)P(E_2-E_1)=P(E_2)-P(E_1)P(E2E1)=P(E2)P(E1)
  • for a given event ,P(E)≤1P(E) \le 1P(E)1
  • for arbitrary event EEE, P(Eˉ)=1−P(E)P(\bar E)=1-P(E)P(Eˉ)=1P(E),the Eˉ\bar EEˉ is inversed event.
    there is an important conclusion that to given both event E1E_1E1 and E2E_2E2,P(E1∪E2)=P(E1)+P(E2)−P(E1E2)P(E_1 \cup E_2)=P(E_1)+P(E_2)-P(E_1E_2)P(E1E2)=P(E1)+P(E2)P(E1E2).
    of course ,the above formula can expand to multiple event’s additivity.for example:
    P(E1∪E2∪..∪En)=Σi=1nP(Ei)−Σ1≤i<j≤nP(EiEj)+Σi≤i<j<k≤nP(EiEjEk)+...+(−1)n−1P(E1E2...En)P(E_1 \cup E_2 \cup ..\cup E_n)=\Sigma_{i=1} ^n P(E_i)-\Sigma_{1\le i <j \le n} P(E_iE_j)+\Sigma_{i \le i < j<k \le n}P(E_iE_jE_k)+...+(-1)^{n-1}P(E_1E_2...E_n)P(E1E2..En)=Σi=1nP(Ei)Σ1i<jnP(EiEj)+Σii<j<knP(EiEjEk)+...+(1)n1P(E1E2...En)
  1. the classical probability derives from the initial stage of probability theory,that means each one of sample space which has finite samples such as G={G1,G2,...Gn}G=\{G_1,G_2,...G_n\}G={G1,G2,...Gn} has the same possibility of existence.
    to compute a fundamental classical probablity is so simple because that Any two samples in sample space appear mutually exclusively and the finite additivity of probability.for example:
    P(∪i=1n{Gi})=P(G)=1P(\cup_{i=1}^n\{G_i\})=P(G)=1P(i=1n{Gi})=P(G)=1
    P(∪i=1n){Gi})=Σi=1nP(Gi)=nP(Gi)P(\cup_{i=1}^n)\{G_i\})=\Sigma_{i=1}^nP(G_i)=nP(G_i)P(i=1n){Gi})=Σi=1nP(Gi)=nP(Gi),P(G1)=P(G2)=...P(G_1)=P(G_2)=...P(G1)=P(G2)=...
    so that,each P(Gi)=1nP(G_i)=\frac 1 nP(Gi)=n1
    the above example suppose that one event includes only one sample,but in real life,one event perhaps involves some samples,for example,G2G_2G2 consists of n2n_2n2 samples,then P(G2)=n2nP(G_2)=\frac {n_2} nP(G2)=nn2.
  2. Permutations and Combinations
  • the repetitve permutaion denotes that there are a sets AAA consisted of aalla_{all}aall distinct elements, we take out aparta_{part}apart elements from the AAA sets one by one,achieving total progress costs aparta_{part}apart times, that is to say,each time to take one out and put it back.so that, there are aallapart{a_{all}}^{a_{part}}aallapart kinds of permutations.
  • permutation means fetching aparta_{part}apart elements from a sets AAA which includes aalla_{all}aall elements to arrange without returning it back ,so that Paallapart=aall!(aall−apart)!P_{a_{all}}^{a_{part}}=\frac {a_{all}!} {(a_{all}-a_{part})!}Paallapart=(aallapart)!aall! kinds of permutations exists in the progress.
  • full permutation: when aall=aparta_{all}=a_{part}aall=apart,Paallapart=apart!P_{a_{all}}^{a_{part}}=a_{part}!Paallapart=apart!
  • combination: if we get aparta_{part}apart elements from aalla_{all}aall distinct elements without their order for making a combination ,and do it repeatedly, then the total number of those combinations is as follows.
    Caallapart=PaallapartPapartapart=aall!apart!(aall−apart)!C_{a_{all}}^{a_{part}}=\frac {P_{a_{all}}^{a_{part}}} {P_{a_{part}}^{a_{part}}}=\frac {a_{all}!} {a_{part}!(a_{all}-a_{part})!} Caallapart=PapartapartPaallapart=apart!(aallapart)!aall!
  1. we take out an integer from lots of integers with a length of 12 digits, what is the probability that the first five digits are all different ?
    in the first place,one of the first five digits is an integer ranged from 0 to 9,so we have 10510^5105 ways to make the integer which has five digits, those ways construct a sample space.in the second place,P105P_{10}^5P105 represent the number of permutations that five digits total are distinct because that five different numbers will be choosed in a range between 0 and 9 arbitrarily.
    so that we get the probability which is P105105\frac {P_{10}^5}{10^5}105P105.

references

  1. 《数学》
http://www.dtcms.com/a/410754.html

相关文章:

  • 【mdBook】1 安装
  • 唐山网站建设费用廊坊市做网站的公司有哪些
  • AI大模型学习(16)AI大模型在电商行业的一些应用(淘宝的以图搜图技术)
  • 【日常学习】UI自动化自定义异常类
  • 个人项目开发经验总结:从实践中提炼的宝贵心得
  • Linux条件变量:pthread_cond_init、pthread_cond_wait等函数详解
  • HashMap的api使用详解
  • IS-IS核心解析:驱动现代网络的隐形力量
  • Unity地面震动的效果
  • Unity Shader变体管理最佳实践
  • 网站开发目的重庆建设工程信息网 官网
  • 镇江网站排名优化费用wordpress推广积分插件
  • 基于51单片机的自习室人数统计系统
  • C4D口红建模核心技巧:优质布线的思路与操作方法
  • 虚拟机管理程序(Hypervisor)
  • 黑盒测试和白盒测试
  • iree 上运行qwen2.5 05b运行效率
  • dw手机网站怎么做软文推广代理平台
  • qq刷赞网站推广软件广告机 东莞网站建设
  • 佛山网站建设原创网站底部版权信息
  • Unity / C# 开发常见问题总结(闭包、协程、事件、GC 等易踩坑)
  • C# 集合框架完全指南:从IEnumerable到ObservableCollection的深度解析
  • 用户研究:用户研究和数据分析的根本联系与区别
  • 网站关键词优化培训jeecg 3.7 网站开发
  • 右键菜单增强工具,自定义系统功能
  • 图像分类入门:从数据到模型的深度学习核心知识解析
  • 攻防世界-Web-PHP2
  • Windows系统Web UI自动化测试学习系列3--浏览器驱动下载使用
  • 00-为什么要系统学习正则表达式?
  • 湖北网站建设检修金融股票类app网站开发