当前位置: 首页 > news >正文

PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化技术

我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。随着小卫星星座的普及,对地观测已具备3次以上的全球覆盖能力,遥感影像也不断被更深入的应用于矿产勘探、精准农业、城市规划、林业测量、军事目标识别和灾害评估中。最近借助深度学习方法,基于卷积神经网络的遥感影像自动地物识别取得了令人印象深刻的结果。深度卷积网络采用“端对端”的特征学习,通过多层处理机制揭示隐藏于数据中的非线性特征,能够从大量训练集中自动学习全局特征(这种特征被称为“学习特征”),是其在遥感影像自动目标识别取得成功的重要原因,也标志特征模型从手工特征向学习特征转变。以PyTorch为主体的深度学习平台为使用卷积神经网络也提供程序框架。但卷积神经网络涉及到的数学模型和计算机算法都十分复杂、运行及处理难度很大,PyTorch平台的掌握也并不容易。使广大学者能理解卷积神经网络背后的数学模型和计算机算法,掌握利用PyTorch为基础的遥感影像地物分类,遥感图像目标检测,以及遥感图像目标分割等应用。

深度卷积网络知识详解1.深度学习在遥感图像识别中的范式和问题2.梳理深度学习的历史发展历程,从中理解深度学习在遥感应用中的优缺点3.机器学习,深度学习等任务的处理流程4.卷积神经网络的原理及应用5.卷积运算的原理、方法6.池化操作,全连接层,以及分类器的作用及在应用中的注意事项7.BP反向传播算法的方法8.CNN模型代码详解9.特征图,卷积核可视化分析

图片

PyTorch应用与实践(遥感图像场景分类)1.PyTorch框架2.动态计算图,静态计算图等机制3.PyTorch的使用教程4.PyTorch的学习案例5.PyTorch的使用与API6.PyTorch图像分类任务策略方法

案例:(1)不同超参数,如初始化,学习率对结果的影响(2)使用PyTorch搭建神经网络并实现遥感图像场景分类

图片

图片

卷积神经网络实践与遥感影像目标检测1.深度学习下的遥感影像目标检测基本知识2.目标检测数据集的图像和标签表示方式3.讲解目标检测模型的评估方案,包括正确率,精确率,召回率,mAP等4.讲解two-stage(二阶)检测模型框架,RCNN, Fast RCNN, Faster RCNN等框架的演变和差异5.讲解 one-stage(一阶)检测模型框架,SDD ,Yolo等系列模型现有检测模型发展小结

图片

遥感影像目标检测任务案例

案例 1:(1)一份完整的Faster-RCNN 模型下实现遥感影像的目标检测(2)讲解数据集的制作过程,包括数据的存储和处理(3)数据集标签的制作(4)模型的搭建,组合和训练(5)检测任数据集在验证过程中的注意事项 

图片

图片

深度学习与遥感影像分割任务1.深度学习下的遥感影像分割任务的基本概念2.讲解FCN,SegNet,U-net等模型的差异3.分割模型的发展小结4.遥感影像分割任务和图像分割的差异5.在遥感影像分割任务中的注意事项

案例 (1)讲解数据集的准备和处理(2)遥感影像划分成小图像的策略(3)模型的构建和训练方法(4)验证集的使用过程中的注意事项

图片

图片

遥感影像问题探讨与深度学习优化技巧1.现有几个优秀模型结构的演变原理,包括AlexNet,VGG,googleNet,ResNet,DenseNet等模型2.从模型演变中讲解实际训练模型的技巧3.讲解针对数据的优化策略4.讲解针对模型的优化策略5.讲解针对训练过程的优化策略6.讲解针对检测任务的优化策略7.讲解针对分割任务的优化策略8.提供一些常用的检测,分割数据集的标注工具

图片

附加课程学员根据科研或生产实际,集体讨论深度学习实施方案提供若干附加材料,包括数据集,标签工具、代码以及学习材料实例回顾、训练、巩固

http://www.dtcms.com/a/406286.html

相关文章:

  • html5如何实现网站开发俄文网站推广
  • Vue3》》 ref 获取子组件实例 原理
  • 【C++实战㊶】C++建造者模式:复杂对象构建的秘密武器
  • stm32h743iit6 USB FS 启用 VBUS 或 BCD 前后的区别
  • 资源网站模板网页qq登陆手机版网址
  • vue中.env文件是什么,在vue2和vue3中的区别
  • ADMM 算法的基本概念
  • Vue中如何封装双向绑定的组件
  • 个人网站建设与维护上传wordpress到空间
  • 深入剖析Spring Boot依赖注入顺序:从原理到实战
  • 对象关系映射(ORM)
  • 在VS Code 中为Roo Code 添加 Bright Data 的本地MCP服务器
  • 专业的制作网站开发公司wordpress界面404
  • Python Pillow库详解:图像处理的瑞士军刀
  • AI 时代的安全防线:国产大模型的数据风险与治理路径
  • Deepoc具身智能模型:为传统机器人注入“灵魂”,重塑建筑施工现场安全新范式
  • 鸿蒙NEXT安全控件解析:实现精准权限管控的新范式
  • 创建自己的网站广告图片
  • GraphRAG:引领自然语言处理进入深层语义分析新纪元
  • 免费的个人简历电子版seo怎么优化排名
  • 5、urbane-commerce 微服务统一依赖版本管理规范
  • 17.DHCP服务器及DNS服务
  • 如何在 Vue 中打印页面:直接用 web-print-pdf(npm 包)
  • 响应式网站内容布局网站开发团队成员介绍
  • PaintBoard+cpolar:云端画板的远程创作方案
  • 9月25日星期四今日早报简报微语报早读
  • 零基础学AI大模型之AI大模型可视化界面
  • 深圳建设工程项目网站沈阳网站模板建站
  • (二)3.1.9 生产“稳”担当:Apache DolphinScheduler Worker 服务源码全方位解析
  • Linux-01(Linux 基础命令)